Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563712

RESUMO

Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome-a conditioned medium released by heat shock protein 60 (Hsp60)-overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.


Assuntos
Caquexia , Chaperonina 60 , Caquexia/metabolismo , Chaperonina 60/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Proteômica , Qualidade de Vida
2.
J Cachexia Sarcopenia Muscle ; 13(2): 1339-1359, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170869

RESUMO

BACKGROUND: Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized. METHODS: To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles. RESULTS: Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones. CONCLUSIONS: Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.


Assuntos
Histona Desacetilases , Distrofia Muscular de Duchenne , Adolescente , Animais , Criança , Citoplasma/metabolismo , Citoplasma/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Proteínas Repressoras
3.
Diagnostics (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445790

RESUMO

Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients' quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.

4.
Eur J Transl Myol ; 30(1): 8899, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499895

RESUMO

The neurohypophyseal hormones vasopressin and oxytocin were invested, in recent years, with novel functions upon striated muscle, regulating its differentiation, trophism, and homeostasis. Recent studies highlight that these hormones not only target skeletal muscle but represent novel myokines. We discuss the possibility of exploiting the muscle hypertrophying activity of oxytocin to revert muscle atrophy, including cancer cachexia muscle wasting. Furthermore, the role of oxytocin in cardiac homeostasis and the possible role of cardiac atrophy as a concause of death in cachectic patients is discussed.

5.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041358

RESUMO

An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers. Since NCAM expression is upregulated in denervated myofibers, we searched for additional makers of denervation, including AchRs, MUSK, and HDAC. This last one being also consistently upregulated in cachectic muscles, correlated with an increase of central myonuclei. This held true in the musculature of patients suffering from gastrointestinal cancer, where a progressive increase in the number of central myonuclei was observed in weight stable and in cachectic patients, compared to healthy subjects. Based on all of the above, the presence of central myonuclei in cancer patients and animal models of cachexia is consistent with motor neuron loss or NMJ perturbation and could underlie a previously neglected phenomenon of denervation, rather than representing myofiber damage and regeneration in cachexia. Similarly to aging, denervation-dependent myofiber atrophy could contribute to muscle wasting in cancer cachexia.


Assuntos
Biomarcadores/metabolismo , Caquexia/patologia , Neoplasias do Colo/complicações , Fibras Musculares Esqueléticas/metabolismo , Animais , Caquexia/etiologia , Caquexia/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Feminino , Histona Desacetilases/metabolismo , Camundongos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/inervação , Transplante de Neoplasias
6.
Stem Cell Reports ; 13(4): 573-589, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597110

RESUMO

The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Autorrenovação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético , Epigênese Genética , Animais , Biomarcadores , Diferenciação Celular/genética , Autorrenovação Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fenótipo , Transplante de Células-Tronco
7.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461843

RESUMO

Arginine-vasopressin (AVP) promotes muscle differentiation, hypertrophy, and regeneration through the combined activation of the calcineurin and Calcium/Calmodulin-dependent Protein Kinase (CaMK) pathways. The AVP system is impaired in several neuromuscular diseases, suggesting that AVP may act as a physiological factor in skeletal muscle. Since the Phosphoinositide 3-kinases/Protein Kinase B/mammalian Target Of Rapamycin (PI3K/Akt/mTOR) signaling plays a significant role in regulating muscle mass, we evaluated its role in the AVP myogenic effect. In L6 cells AKT1 expression was knocked down, and the AVP-dependent expression of mTOR and Forkhead box O3 (FoxO) was analyzed by Western blotting. The effect of the PI3K inhibitor LY294002 was evaluated by cellular and molecular techniques. Akt knockdown hampered the AVP-dependent mTOR expression while increased the levels of FoxO transcription factor. LY294002 treatment inhibited the AVP-dependent expression of Myocyte Enhancer Factor-2 (MEF2) and myogenin and prevented the nuclear translocation of MEF2. LY294002 also repressed the AVP-dependent nuclear export of histone deacetylase 4 (HDAC4) interfering with the formation of multifactorial complexes on the myogenin promoter. We demonstrate that the PI3K/Akt pathway is essential for the full myogenic effect of AVP and that, by targeting this pathway, one may highlight novel strategies to counteract muscle wasting in aging or neuromuscular disorders.


Assuntos
Diferenciação Celular , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vasopressinas/farmacologia , Animais , Linhagem Celular , Cromonas/farmacologia , Proteína Forkhead Box O3/metabolismo , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Morfolinas/farmacologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Ratos , Serina-Treonina Quinases TOR/metabolismo
8.
Front Physiol ; 10: 500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114509

RESUMO

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.

9.
Front Physiol ; 10: 401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068826

RESUMO

Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.

10.
Eur J Transl Myol ; 28(3): 7687, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30344980

RESUMO

Physiological autophagy plays a crucial role in the regulation of muscle mass and metabolism, while the excessive induction or the inhibition of the autophagic flux contributes to the progression of several diseases. Autophagy can be activated by different stimuli, including cancer, exercise, caloric restriction and denervation. The latter leads to muscle atrophy through the activation of catabolic pathways, i.e. the ubiquitin-proteasome system and autophagy. However, the kinetics of autophagy activation and the upstream molecular pathways in denervated skeletal muscle have not been reported yet. In this study, we characterized the kinetics of autophagic induction, quickly triggered by denervation, and report the Akt/mTOR axis activation. Besides, with the aim to assess the relative contribution of autophagy in neurogenic muscle atrophy, we triggered autophagy with different stimuli along with denervation, and observed that four week-long autophagic induction, by either intermitted fasting or rapamycin treatment, did not significantly affect muscle mass loss. We conclude that: i) autophagy does not play a major role in inducing muscle loss following denervation; ii) nonetheless, autophagy may have a regulatory role in denervation induced muscle atrophy, since it is significantly upregulated as early as eight hours after denervation; iii) Akt/mTOR axis, AMPK and FoxO3a are activated consistently with the progression of muscle atrophy, further highlighting the complexity of the signaling response to the atrophying stimulus deriving from denervation.

11.
Eur J Transl Myol ; 27(1): 6483, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28458808

RESUMO

Invited Letter to the Editor. Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University), we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.

12.
Sci Rep ; 6: 26991, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244599

RESUMO

Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Autofagia/efeitos dos fármacos , Caquexia/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Debilidade Muscular/prevenção & controle , Condicionamento Físico Animal , Ribonucleotídeos/farmacologia , Sirolimo/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Caquexia/metabolismo , Caquexia/mortalidade , Caquexia/fisiopatologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Neoplasias do Colo/fisiopatologia , Feminino , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transplante de Neoplasias , Análise de Sobrevida
13.
Stem Cells Int ; 2016: 6729268, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034684

RESUMO

Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

14.
Mol Ther ; 23(6): 1003-1021, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25762009

RESUMO

The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.


Assuntos
Proliferação de Células/efeitos dos fármacos , Grelina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Regeneração/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Injeções Intramusculares , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Biomed Res Int ; 2014: 235426, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971321

RESUMO

Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF) is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-)dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca(2+)/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.


Assuntos
Arginina Vasopressina/metabolismo , Atrofia Muscular/metabolismo , Receptores de Vasopressinas/metabolismo , Regeneração , Transdução de Sinais , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Receptores de Vasopressinas/genética , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo
16.
J Clin Invest ; 123(11): 4821-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24084740

RESUMO

Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB-dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer.


Assuntos
Caquexia/etiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição PAX7/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Caquexia/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Nus , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Desenvolvimento Muscular , Músculo Esquelético/patologia , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patologia , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Microambiente Tumoral , Adulto Jovem
17.
ScientificWorldJournal ; 2013: 237260, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533342

RESUMO

Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is, BALB/c mice. We found that only a minority of the population of one of these substrains, the BALB/c J, performs spontaneous physical activity. In addition, the runners of this substrain cover a significantly smaller distance than the average runners of two other substrains, namely, the BALB/c ByJ and the BALB/c AnNCrl. The latter shows a striking level of voluntary activity, with the average distance run/day reaching up to about 12 kilometers. These runners are not outstanders, but they represent the majority of the population, with important scientific and economic fallouts to be taken into account during experimental planning. Spontaneous activity persists in pathological conditions, such as cancer-associated cachexia. This important amount of physical activity results in a minor muscle adaptation to endurance exercise over a three-week period; indeed, only a nonsignificant increase in NADH transferase+ fibers occurs in this time frame.


Assuntos
Comportamento Animal/fisiologia , Camundongos Endogâmicos BALB C , Atividade Motora , Resistência Física/fisiologia , Animais , Peso Corporal , Feminino , Imuno-Histoquímica , Camundongos , Mitocôndrias/fisiologia , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/fisiologia , Força Muscular , NADH NADPH Oxirredutases/análise , Oxirredução , Fatores de Tempo
18.
BMC Cancer ; 10: 363, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20615237

RESUMO

BACKGROUND: The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. METHODS: A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. RESULTS: We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. CONCLUSIONS: We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a well standardized experimental model for research on cancer cachexia. We wish to point out that scientists using the C26 model to study cancer and those using the same model to study cachexia may be unaware of each other's works because they use different keywords; we present strategies to eliminate this gap and discuss the benefits of such an exchange of knowledge.


Assuntos
Adenocarcinoma/complicações , Caquexia/etiologia , Neoplasias do Colo/complicações , Neoplasias Pulmonares/complicações , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Adenocarcinoma/patologia , Animais , Apoptose , Western Blotting , Caquexia/patologia , Proliferação de Células , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Atrofia Muscular/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
PLoS One ; 4(5): e5570, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440308

RESUMO

Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF) triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg(8)-vasopressin (AVP) enhanced skeletal muscle regeneration and rescued the inhibitory effects of TNF on muscle regeneration. The functional analysis of regenerating muscle performance following TNF or AVP treatments revealed that these factors exerted opposite effects on muscle function. Principal component analysis showed that TNF and AVP mainly affect muscle tetanic force and fatigue. Importantly, AVP counteracted the effects of TNF on muscle function when delivered in combination with the latter. Muscle regeneration is, at least in part, regulated by caspase activation, and AVP abrogated TNF-dependent caspase activation. The contrasting effects of AVP and TNF in vivo are recapitulated in myogenic cell cultures, which express both PW1, a caspase activator, and Hsp70, a caspase inhibitor. We identified PW1 as a potential Hsp70 partner by screening for proteins interacting with PW1. Hsp70 and PW1 co-immunoprecipitated and co-localized in muscle cells. In vivo Hsp70 protein level was upregulated by AVP, and Hsp70 overexpression counteracted the TNF block of muscle regeneration. Our results show that AVP counteracts the effects of TNF through cross-talk at the Hsp70 level. Therefore, muscle regeneration, both in the absence and in the presence of cytokines may be enhanced by increasing Hsp70 expression.


Assuntos
Arginina Vasopressina/farmacologia , Hemostáticos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Western Blotting , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Eletroporação , Ativação Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Biomed Mater Res A ; 91(2): 370-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18980225

RESUMO

Culturing of skeletal muscle cells on conductive surfaces is required to develop electronic device-muscle junctions for tissue engineering and medical applications. We characterized from a molecular and morphological point of view myogenic cells cultured on gold and on cysteamine-coated gold, as compared to the standard plastic for cell culture. Our results show that cell proliferation and survival are comparable between cells grown on either of the gold surface or plastic. The majority of the cells cultured on gold surfaces retain the ability to respond to differentiation cues, as shown by nuclear translocation of myogenin. Following terminal differentiation, the myotubes cultured on cysteamine-coated gold resemble myotube cultures obtained on plastic for the size and orientation of the myotube bundles retaining most of myosin expression; on the contrary, the myotube cultures on gold show a clumped morphology, likely due to repulsive cell-substratum interaction resulting in aberrant differentiation. On the basis of the aforementioned evidences, the culture of muscle cells on cysteamine-coated gold represents an advance with respect to previously reported substrata. The cysteamine self-assembled monolayer coating is a simple approach to accomplish cultures of myotubes in unprecedented tight proximity to conductive surfaces.


Assuntos
Cisteamina/química , Ouro/química , Fibras Musculares Esqueléticas/citologia , Engenharia Tecidual/métodos , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular , Fibras Musculares Esqueléticas/metabolismo , Miogenina/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA