Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Commun ; 15(1): 2931, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575566

RESUMO

Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.


Assuntos
Cistationina beta-Sintase , Metionina , Humanos , Cistationina beta-Sintase/metabolismo , Microscopia Crioeletrônica , S-Adenosilmetionina/metabolismo , Domínio Catalítico
2.
Nanomedicine (Lond) ; 19(3): 231-254, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38284384

RESUMO

Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 µg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.


Assuntos
Neoplasias da Mama , Nanopartículas , Nylons , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Polímeros/química , Metacrilatos/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química
3.
J Photochem Photobiol B ; 243: 112713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086566

RESUMO

Ultraviolet C (UVC) light has long been used as a sterilizing agent, primarily through devices that emit at 254 nm. Depending on the dose and duration of exposure, UV 254 nm can cause erythema and photokeratitis and potentially cause skin cancer since it directly modifies nitrogenated nucleic acid bases. Filtered KrCl excimer lamps (emitting mainly at 222 nm) have emerged as safer germicidal tools and have even been proposed as devices to sterilize surgical wounds. All the studies that showed the safety of 222 nm analyzed cell number and viability, erythema generation, epidermal thickening, the formation of genetic lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs) and cancer-inducing potential. Although nucleic acids can absorb and be modified by both UV 254 nm and UV 222 nm equally, compared to UV 254 nm, UV 222 nm is more intensely absorbed by proteins (especially aromatic side chains), causing photooxidation and cross-linking. Here, in addition to analyzing DNA lesion formation, for the first time, we evaluated changes in the proteome and cellular pathways, reactive oxygen species formation, and metalloproteinase (MMP) levels and activity in full-thickness in vitro reconstructed human skin (RHS) exposed to UV 222 nm. We also performed the longest (40 days) in vivo study of UV 222 nm exposure in the HRS/J mouse model at the occupational threshold limit value (TLV) for indirect exposure (25 mJ/cm2) and evaluated overall skin morphology, cellular pathological alterations, CPD and 6-4PP formation and MMP-9 activity. Our study showed that processes related to reactive oxygen species and inflammatory responses were more altered by UV 254 nm than by UV 222 nm. Our chronic in vivo exposure assay using the TLV confirmed that UV 222 nm causes minor damage to the skin. However, alterations in pathways related to skin regeneration raise concerns about direct exposure to UV 222 nm.


Assuntos
Dano ao DNA , Ácidos Nucleicos , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Dímeros de Pirimidina/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Ácidos Nucleicos/metabolismo , Eritema
4.
Mol Oncol ; 17(5): 713-717, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916500

RESUMO

Accuracy and transparency of scientific data are becoming more and more relevant with the increasing concern regarding the evaluation of data reproducibility in many research areas. This concern is also true for quantifying coding and noncoding RNAs, with the remarkable increase in publications reporting RNA profiling and sequencing studies. To address the problem, we propose the following recommendations: (a) accurate documentation of experimental procedures in Materials and methods (and not only in the supplementary information, as many journals have a strict mandate for making Materials and methods as visible as possible in the main text); (b) submission of RT-qPCR raw data for all experiments reported; and (c) adoption of a unified, simple format for submitted RT-qPCR raw data. The Real-time PCR Data Essential Spreadsheet Format (RDES) was created for this purpose.


Assuntos
RNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase em Tempo Real/métodos
5.
Med Oncol ; 40(1): 61, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566308

RESUMO

MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Ciclo Celular/genética , Genótipo , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Polimorfismo de Nucleotídeo Único
6.
Photodiagnosis Photodyn Ther ; 39: 103015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843562

RESUMO

Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.


Assuntos
COVID-19 , Fotoquimioterapia , Desinfecção/métodos , Humanos , Fotoquimioterapia/métodos , SARS-CoV-2 , Saliva , Raios Ultravioleta
7.
Front Genet ; 13: 865472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846122

RESUMO

Breast cancer (BC) is a heterogeneous disease, and establishing biomarkers is essential to patient management. We previously described that extracellular vesicle-derived miRNAs (EV-miRNAs) miR-142-5p, miR-150-5p, miR-320a, and miR-4433b-5p in serum discriminated BC from control samples, either alone or combined in a panel. Using these previously described markers, we intend to evaluate whether the same markers identified in EVs are also potential biomarkers in tissue and serum. Expression analysis using RT-qPCR was performed using serum of 67 breast cancer patients (BC-S), 19 serum controls (CT), 83 fresh tumor tissues (BC-T), and 29 adjacent nontumor tissue samples (NT). In addition, analysis from The Cancer Genome Atlas (TCGA) data (832 BC-T and 136 NT) was performed. In all comparisons, we found concordant high expression levels of miR-320a and miR-4433b-5p in BC-S compared to CT in both EVs and cell-free miRNAs (cf-miRNAs). Although miR-150-5p and miR-142-5p were not found to be differentially expressed in serum, panels including these miRNAs improved sensitivity and specificity, supporting our previous findings in EVs. Fresh tissue and data from the TCGA database had, in most comparisons, an opposite behavior when compared to serum and EVs: lower levels of all miRNAs in BC-T than those in NT samples. TCGA analyses revealed reduced expression levels of miR-150-5p and miR-320a-3p in BC-T than those in NT samples and the overexpression of miR-142-5p in BC-T, unlike our RT-qPCR results from tissue in the Brazilian cohort. The fresh tissue analysis showed that all miRNAs individually could discriminate between BC-T and NT in the Brazilian cohort, with high sensitivity and sensibility. Furthermore, combining panels showed higher AUC values and improved sensitivity and specificity. In addition, lower levels of miR-320a-3p in serum were associated with poor overall survival in BC Brazilian patients. In summary, we observed that miR-320a and miR-4433b-5p distinguished BC from controls with high specificity and sensibility, regardless of the sample source. In addition, lower levels of miR-150-5p and higher levels of miR-142-5p were statistically significant biomarkers in tissue, according to TCGA. When combined in panels, all combinations could distinguish BC patients from controls. These results highlight a potential application of these miRNAs as BC biomarkers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35674637

RESUMO

This prospective cohort study aims to analyze the surveillance of COVID-19 at a single hematopoietic stem cell transplantation (HSCT) center in Brazil, in 29 patients undergoing allogeneic HSCT and 57 healthcare workers (nurses and dentists), through viral shedding of SARS-CoV-2 in saliva and plasma and seroprevalence of anti-SARS-CoV-2 IgG. In addition, we report two cases with prolonged persistent detection of SARS-CoV-2 without seroconversion. The sample collection was performed seven times for patients and five times for healthcare workers. Only two patients tested positive for SARS-CoV-2 in their saliva and plasma samples (6.9%) without seroconversion. All healthcare workers were asymptomatic and none tested positive. Two patients (6.9%) and four nurses (8%) had positive serology. No dentists had positive viral detection or positive serology. Our results reflect a low prevalence of positive RT-PCR and seroprevalence of SARS-CoV-2 in patients and healthcare workers at a single HSCT center. Results have also corroborated how the rigorous protocols adopted in transplant centers were even more strengthened in this pandemic scenario.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , Pessoal de Saúde , Humanos , Estudos Prospectivos , SARS-CoV-2 , Saliva , Estudos Soroepidemiológicos , Viremia
9.
Diabetes ; 71(7): 1546-1561, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35377454

RESUMO

Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.


Assuntos
Resistência à Insulina , Leptina , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Leptina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
10.
Biomolecules ; 12(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35204715

RESUMO

Ultraconserved regions (UCRs) are 481 genome segments, with length longer than 200 bp, that are 100% conserved among humans, mice, and rats. The majority of UCRs are transcriptionally active (T-UCRs) as many of them produce non-coding RNAs. In a previous study, we evaluated the expression level of T-UCRs in breast cancer (BC) patients and found that 63% of transcripts correlated with some clinical and/or molecular parameter of BC. In this study, we delved into the expression levels of 12 T-UCRs and correlated them with clinicopathological parameters, immunohistochemical markers, and overall survival in two breast cancer cohorts: TCGA and Brazilian patients. We found that uc.268 is more expressed in TCGA patients under 40 years of age, associated with progesterone receptor (PR) and estrogen receptor (ER), and its high expression is found in luminal A. Lower uc.84 and uc.376 were respectively observed in metastatic and stage IV tumors associated with good prognostic in luminal B. Moreover, uc.84 was only related to the HER2+, while uc.376 was related to ER+ and PR+, and HER2+. A panel composed of uc.147, uc.271, and uc.427 distinguished luminal A from triple negative patients with an AUC of 0.9531 (sensitivity 92.19% and specificity 86.76%). These results highlight the potential role of T-UCRs in BC and provide insights into the potential application of T-UCRs as biomarkers.


Assuntos
Neoplasias da Mama , Animais , Brasil , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Ratos
11.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1387336

RESUMO

ABSTRACT This prospective cohort study aims to analyze the surveillance of COVID-19 at a single hematopoietic stem cell transplantation (HSCT) center in Brazil, in 29 patients undergoing allogeneic HSCT and 57 healthcare workers (nurses and dentists), through viral shedding of SARS-CoV-2 in saliva and plasma and seroprevalence of anti-SARS-CoV-2 IgG. In addition, we report two cases with prolonged persistent detection of SARS-CoV-2 without seroconversion. The sample collection was performed seven times for patients and five times for healthcare workers. Only two patients tested positive for SARS-CoV-2 in their saliva and plasma samples (6.9%) without seroconversion. All healthcare workers were asymptomatic and none tested positive. Two patients (6.9%) and four nurses (8%) had positive serology. No dentists had positive viral detection or positive serology. Our results reflect a low prevalence of positive RT-PCR and seroprevalence of SARS-CoV-2 in patients and healthcare workers at a single HSCT center. Results have also corroborated how the rigorous protocols adopted in transplant centers were even more strengthened in this pandemic scenario.

12.
Rev. Soc. Bras. Med. Trop ; 55: e0265, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360818

RESUMO

ABSTRACT BACKGROUND: We aimed to describe the clinical characteristics of coronavirus disease 2019 (COVID-19) among healthcare workers (HCWs) in Curitiba, Brazil. METHODS: Upper respiratory samples from 1077 HCWs were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using reverse transcription polymerase chain reaction from June 16, 2020 to December 9, 2020. RESULTS: Overall, 32.7% of HCWs were infected. The positivity rates in symptomatic and asymptomatic HCWs were 39.2% and 15.9%, respectively. Hospital departments categorized as high-risk for exposure had the highest number of infected HCWs. CONCLUSIONS: Early diagnosis and isolation of infected HCWs remain key in controlling SARS-CoV-2 transmission because HCWs in close contact with COVID-19 patients are more likely to be infected than those who are not.

13.
ACS Pharmacol Transl Sci ; 4(6): 1849-1866, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34927015

RESUMO

The glutaminase (GLS) enzyme hydrolyzes glutamine into glutamate, an important anaplerotic source for the tricarboxylic acid cycle in rapidly growing cancer cells under the Warburg effect. Glutamine-derived α-ketoglutarate is also an important cofactor of chromatin-modifying enzymes, and through epigenetic changes, it keeps cancer cells in an undifferentiated state. Moreover, glutamate is an important neurotransmitter, and deregulated glutaminase activity in the nervous system underlies several neurological disorders. Given the proven importance of glutaminase for critical diseases, we describe the development of a new coupled enzyme-based fluorescent glutaminase activity assay formatted for 384-well plates for high-throughput screening (HTS) of glutaminase inhibitors. We applied the new methodology to screen a ∼30,000-compound library to search for GLS inhibitors. The HTS assay identified 11 glutaminase inhibitors as hits that were characterized by in silico, biochemical, and glutaminase-based cellular assays. A structure-activity relationship study on the most promising hit (C9) allowed the discovery of a derivative, C9.22, with enhanced in vitro and cellular glutaminase-inhibiting activity. In summary, we discovered a new glutaminase inhibitor with an innovative structural scaffold and described the molecular determinants of its activity.

14.
Oncogene ; 39(3): 690-702, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541193

RESUMO

Many types of cancers have a well-established dependence on glutamine metabolism to support survival and growth, a process linked to glutaminase 1 (GLS) isoforms. Conversely, GLS2 variants often have tumor-suppressing activity. Triple-negative (TN) breast cancer (testing negative for estrogen, progesterone, and Her2 receptors) has elevated GLS protein levels and reportedly depends on exogenous glutamine and GLS activity for survival. Despite having high GLS levels, we verified that several breast cancer cells (including TN cells) express endogenous GLS2, defying its role as a bona fide tumor suppressor. Moreover, ectopic GLS2 expression rescued cell proliferation, TCA anaplerosis, redox balance, and mitochondrial function after GLS inhibition by the small molecule currently in clinical trials CB-839 or GLS knockdown of GLS-dependent cell lines. In several cell lines, GLS2 knockdown decreased cell proliferation and glutamine-linked metabolic phenotypes. Strikingly, long-term treatment of TN cells with another GLS-exclusive inhibitor bis-2'-(5-phenylacetamide-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) selected for a drug-resistant population with increased endogenous GLS2 and restored proliferative capacity. GLS2 was linked to enhanced in vitro cell migration and invasion, mesenchymal markers (through the ERK-ZEB1-vimentin axis under certain conditions) and in vivo lung metastasis. Of concern, GLS2 amplification or overexpression is linked to an overall, disease-free and distant metastasis-free worse survival prognosis in breast cancer. Altogether, these data establish an unforeseen role of GLS2 in sustaining tumor proliferation and underlying metastasis in breast cancer and provide an initial framework for exploring GLS2 as a novel therapeutic target.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese/patologia , Glutaminase/metabolismo , Neoplasias Pulmonares/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Técnicas de Silenciamento de Genes , Glutaminase/antagonistas & inibidores , Humanos , Pessoa de Meia-Idade , Prognóstico , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico
15.
J Biol Chem ; 294(24): 9342-9357, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040181

RESUMO

Triple-negative breast cancers (TNBCs) lack progesterone and estrogen receptors and do not have amplified human epidermal growth factor receptor 2, the main therapeutic targets for managing breast cancer. TNBCs have an altered metabolism, including an increased Warburg effect and glutamine dependence, making the glutaminase inhibitor CB-839 therapeutically promising for this tumor type. Accordingly, CB-839 is currently in phase I/II clinical trials. However, not all TNBCs respond to CB-839 treatment, and the tumor resistance mechanism is not yet fully understood. Here we classified cell lines as CB-839-sensitive or -resistant according to their growth responses to CB-839. Compared with sensitive cells, resistant cells were less glutaminolytic and, upon CB-839 treatment, exhibited a smaller decrease in ATP content and less mitochondrial fragmentation, an indicator of poor mitochondrial health. Transcriptional analyses revealed that the expression levels of genes linked to lipid metabolism were altered between sensitive and resistant cells and between breast cancer tissues (available from The Cancer Genome Atlas project) with low versus high glutaminase (GLS) gene expression. Of note, CB-839-resistant TNBC cells had increased carnitine palmitoyltransferase 2 (CPT2) protein and CPT1 activity levels. In agreement, CB-839-resistant TNBC cells mobilized more fatty acids into mitochondria for oxidation, which responded to AMP-activated protein kinase and acetyl-CoA carboxylase signaling. Moreover, chemical inhibition of both glutaminase and CPT1 decreased cell proliferation and migration of CB-839-resistant cells compared with single inhibition of each enzyme. We propose that dual targeting of glutaminase and CPT1 activities may have therapeutic relevance for managing CB-839-resistant tumors.


Assuntos
Benzenoacetamidas/farmacologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Tiadiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Humanos , Oxirredução , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
16.
Rev. Soc. Bras. Med. Trop ; 52: e20180473, 2019. tab
Artigo em Inglês | LILACS | ID: biblio-990445

RESUMO

Abstract INTRODUCTION: Candidiasis is the most frequent opportunistic mycosis in humans and can cause mortality, particularly in immunodeficient patients. One major concern is the increasing number of infections caused by drug-resistant Candidas trains, as these cannot be efficiently treated with standard therapeutics. The most common mechanism of fluconazole resistance in Candida is mutation of ERG11, a gene involved in the biosynthesis of ergosterol, a compound essential for cell integrity and membrane function. METHODS: Based on this knowledge, we investigated polymorphisms in the ERG11 gene of 3 Candida species isolated from immunocompromised and immunocompetent patients. In addition, we correlated the genetic data with the fluconazole susceptibility profile of the Candida isolates. RESULTS: A total of 80 Candida albicans, 8 Candida tropicalis and 6 Candida glabrata isolates were obtained from the saliva of diabetic, kidney transplant and immunocompetent patients. Isolates were considered susceptible to fluconazole if the minimum inhibitory concentration was lower than 8 μg/mL. The amino acid mutations F105L, D116E, K119N, S137L, and K128T were observed in C. albicans isolates, and T224C and G263A were found in C. tropicalis isolates. CONCLUSIONS: Despite the high number of polymorphisms observed, the mutations occurred in regions that are not predicted to interfere with ergosterol synthesis, and therefore are not related to fluconazole resistance.


Assuntos
Humanos , Masculino , Feminino , Adulto , Idoso , Polimorfismo Genético/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/genética , Fluconazol/farmacologia , Transplante de Rim , Diabetes Mellitus/microbiologia , Antifúngicos/farmacologia , Valores de Referência , Saliva/microbiologia , Candida/isolamento & purificação , DNA Fúngico/genética , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Farmacorresistência Fúngica/genética , Imunocompetência , Pessoa de Meia-Idade , Mutação/efeitos dos fármacos
17.
BMC Cancer ; 17(1): 727, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115931

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by a lack of estrogen and progesterone receptor expression (ESR and PGR, respectively) and an absence of human epithelial growth factor receptor (ERBB2) amplification. Approximately 15-20% of breast malignancies are TNBC. Patients with TNBC often have an unfavorable prognosis. In addition, TNBC represents an important clinical challenge since it does not respond to hormone therapy. METHODS: In this work, we integrated high-throughput mRNA sequencing (RNA-Seq) data from normal and tumor tissues (obtained from The Cancer Genome Atlas, TCGA) and cell lines obtained through in-house sequencing or available from the Gene Expression Omnibus (GEO) to generate a unified list of differentially expressed (DE) genes. Methylome and proteomic data were integrated to our analysis to give further support to our findings. Genes that were overexpressed in TNBC were then curated to retain new potentially druggable targets based on in silico analysis. Knocking-down was used to assess gene importance for TNBC cell proliferation. RESULTS: Our pipeline analysis generated a list of 243 potential new targets for treating TNBC. We finally demonstrated that knock-down of Guanylate-Binding Protein 1 (GBP1 ), one of the candidate genes, selectively affected the growth of TNBC cell lines. Moreover, we showed that GBP1 expression was controlled by epidermal growth factor receptor (EGFR) in breast cancer cell lines. CONCLUSIONS: We propose that GBP1 is a new potential druggable therapeutic target for treating TNBC with enhanced EGFR expression.


Assuntos
Receptores ErbB/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Simulação por Computador , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima
18.
J Biol Chem ; 292(27): 11572-11585, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28526749

RESUMO

On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. However, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform, glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. To obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.


Assuntos
Evolução Molecular , Glutaminase , Modelos Genéticos , Modelos Moleculares , Repetição de Anquirina , Cristalografia por Raios X , Glutaminase/química , Glutaminase/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Domínios Proteicos , Estrutura Quaternária de Proteína
19.
Mem. Inst. Oswaldo Cruz ; 111(7): 417-422, tab, graf
Artigo em Inglês | LILACS | ID: lil-787553

RESUMO

Yeasts of the genus Candida have high genetic variability and are the most common opportunistic pathogenic fungi in humans. In this study, we evaluated the genetic diversity among 120 isolates of Candida spp. obtained from diabetic patients, kidney transplant recipients and patients without any immune deficiencies from Paraná state, Brazil. The analysis was performed using the ITS1-5.8S-ITS2 region and a partial sequence of 28S rDNA. In the phylogenetic analysis, we observed a consistent separation of the species C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. parapsilosis, C. metapsilosis and C. orthopsilosis, however with low intraspecific variability. In the analysis of the C. albicans species, two clades were formed. Clade A included the largest number of isolates (91.2%) and the majority of isolates from GenBank (71.4%). The phylogenetic analysis showed low intraspecific genetic diversity, and the genetic polymorphisms between C. albicans isolates were similar to genetic divergence found in other studies performed with isolates from Brazil. This low genetic diversity of isolates can be explained by the geographic proximity of the patients evaluated. It was observed that yeast colonisation was highest in renal transplant recipients and diabetic patients and that C. albicans was the species most frequently isolated.


Assuntos
Humanos , Masculino , Feminino , Candida/genética , Candidíase Invasiva/genética , Diabetes Mellitus/microbiologia , Variação Genética , Transplante de Rim , Brasil/epidemiologia , Candida/classificação , Candida/isolamento & purificação , Candidíase Invasiva/classificação , Candidíase Invasiva/epidemiologia , Candidíase Invasiva/microbiologia , Estudos de Casos e Controles , Complicações do Diabetes , DNA Fúngico/análise , DNA Ribossômico/genética , Testes de Sensibilidade Microbiana
20.
Mol Cell ; 61(4): 520-534, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26853146

RESUMO

Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.


Assuntos
Glutaminase/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Alelos , Processamento Alternativo , Metabolismo Energético , Células HCT116 , Humanos , Neoplasias/genética , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA