Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780011

RESUMO

The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Cristalografia por Raios X , Conformação Proteica , Domínios Proteicos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética
2.
Nat Cancer ; 4(11): 1592-1609, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904046

RESUMO

Safely expanding indications for cellular therapies has been challenging given a lack of highly cancer-specific surface markers. Here we explore the hypothesis that tumor cells express cancer-specific surface protein conformations that are invisible to standard target discovery pipelines evaluating gene or protein expression, and these conformations can be identified and immunotherapeutically targeted. We term this strategy integrating cross-linking mass spectrometry with glycoprotein surface capture 'structural surfaceomics'. As a proof of principle, we apply this technology to acute myeloid leukemia (AML), a hematologic malignancy with dismal outcomes and no known optimal immunotherapy target. We identify the activated conformation of integrin ß2 as a structurally defined, widely expressed AML-specific target. We develop and characterize recombinant antibodies to this protein conformation and show that chimeric antigen receptor T cells eliminate AML cells and patient-derived xenografts without notable toxicity toward normal hematopoietic cells. Our findings validate an AML conformation-specific target antigen and demonstrate a tool kit for applying these strategies more broadly.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Integrinas/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/genética
3.
J Mol Biol ; 433(15): 167090, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34090922

RESUMO

Members of the αv family of integrins regulate activation of transforming growth factor beta (TGFß) and are directly involved in pro-tumorigenic phenotypes. Thus, αv integrins may be therapeutic targets for fibrosis and cancer, yet the isolation of selective inhibitors is currently a challenge. We generated synthetic antibodies selective for αv integrins by phage display selections on cell lines that displayed integrin heterodimers. We identified antibodies that targeted two distinct epitopes on cell-surface αv integrins and partially inhibited cell adhesion mediated by interactions between integrins and the latency-associated peptide, part of the pro-form of TGFß. Using the isolated antibody paratope sequences we engineered a bispecific antibody capable of binding to both epitopes simultaneously; this antibody potently and completely inhibited cell adhesion mediated by integrins αvß1, αvß3 and αvß5. In addition, the bispecific antibody inhibited proliferation and migration of lung carcinoma lines, where the highest and lowest potencies observed correlated with integrin-αv cell surface expression levels. Taken together, our results demonstrate that phage display selections with live cells can yield high quality anti-integrin antibodies, which we used as biparatopic building blocks to construct a bispecific antibody that strongly inhibited integrin function and may be a therapeutic candidate for cancer and fibrosis.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Epitopos/metabolismo , Integrina alfaV/química , Neoplasias Pulmonares/metabolismo , Células A549 , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Células CHO , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Integrina alfaV/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Biblioteca de Peptídeos
4.
MAbs ; 13(1): 1933690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34190031

RESUMO

In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered "double-DATEs" targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Imunoterapia/métodos , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Complexo CD3/imunologia , Carcinoma Ductal Pancreático/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Neoplasias Pancreáticas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Commun Biol ; 4(1): 561, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980972

RESUMO

Synthetic antibody (Ab) technologies are efficient and cost-effective platforms for the generation of monoclonal Abs against human antigens. Yet, they typically depend on purified proteins, which exclude integral membrane proteins that require the lipid bilayers to support their native structure and function. Here, we present an Ab discovery strategy, termed CellectSeq, for targeting integral membrane proteins on native cells in complex environment. As proof of concept, we targeted three transmembrane proteins linked to cancer, tetraspanin CD151, carbonic anhydrase 9, and integrin-α11. First, we performed in situ cell-based selections to enrich phage-displayed synthetic Ab pools for antigen-specific binders. Then, we designed next-generation sequencing procedures to explore Ab diversities and abundances. Finally, we developed motif-based scoring and sequencing error-filtering algorithms for the comprehensive interrogation of next-generation sequencing pools to identify Abs with high diversities and specificities, even at extremely low abundances, which are very difficult to identify using manual sampling or sequence abundances.


Assuntos
Anticorpos Monoclonais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Membrana/análise , Anticorpos Monoclonais/biossíntese , Anidrase Carbônica IX , Linhagem Celular , Simulação por Computador , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cadeias alfa de Integrinas , Proteínas de Membrana/imunologia , Biologia Sintética/métodos , Tetraspaninas
6.
Oncoimmunology ; 8(2): e1539613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713798

RESUMO

Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. EOC is often diagnosed at late stages, with peritoneal metastases and ascites production. Current surgery and platinum-based chemotherapy regimes fail to prevent recurrence in most patients. High levels of Transforming growth factor-ß (TGF-ß) within ascites has been linked to poor prognosis. TGF-ß signaling promotes epithelial-mesenchymal transition (EMT) in EOC tumor cells, and immune suppression within the tumor microenvironment, with both contributing to chemotherapy resistance and metastasis. The goal of this study was to develop specific synthetic inhibitory antibodies to the Type II TGF-ß receptor (TGFBR2), and test these antibodies in EOC cell and tumor models. Following screening of a phage-displayed synthetic antigen-binding fragment (Fab) library with the extracellular domain of TGFBR2, we identified a lead inhibitory Fab that suppressed TGF-ß signaling in mouse and human EOC cell lines. Affinity maturation of the lead inhibitory Fab resulted in several derivative Fabs with increased affinity for TGFBR2 and efficacy as suppressors of TGF-ß signaling, EMT and EOC cell invasion. In EOC xenograft and syngeneic tumor models, blockade of TGFBR2 with our lead antibodies led to improved chemotherapy response. This correlated with reversal of EMT and immune exclusion in these tumor models with TGFBR2 blockade. Together, these results describe new inhibitors of the TGF-ß pathway that improve antitumor immunity, and response to chemotherapy in preclinical EOC models.

7.
Methods Mol Biol ; 1869: 155-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30324522

RESUMO

The ability to elucidate the phenotype of brain tumor initiating cell (BTIC) in the context of bulk tumor in glioblastoma multiforme (GBM) provides significant therapeutic benefits for therapeutic evaluation. For the identification of such an elusive and rare subpopulation of cells, a single cell analysis technology with deep profiling capabilities known as Mass Cytometry (CyTOF) can prove to be highly useful. CyTOF circumvents the spectral overlap limitations of traditional flow cytometry by replacing fluorophores with metal isotope tags, allowing the accurate detection of significantly more parameters at the same time. In this chapter, we demonstrate that synthetic antibodies can be conjugated with metal isotope tags for CyTOF analysis, resulting in the development of a highly tailored, custom multi-parameter panel. This toolset was used to stain patient-derived GBM cells, which was analyzed via CyTOF. Analysis software viSNE and SPADE were applied to study the co-expression patterns of the Eph Receptor (EphR) family and several putative BTIC markers in GBM, resulting in the identification of a distinct group of cells consistent with a BTIC subpopulation. This approach can be readily adapted to the detection of cancer stem-like cells in other cancer types.


Assuntos
Neoplasias Encefálicas/patologia , Efrinas/metabolismo , Citometria de Fluxo/métodos , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Anticorpos/metabolismo , Sobrevivência Celular , Humanos , Microesferas , Coloração e Rotulagem , Células Tumorais Cultivadas
8.
MAbs ; 10(8): 1157-1167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183492

RESUMO

Secreted Wnt ligands play a major role in the development and progression of many cancers by modulating signaling through cell-surface Frizzled receptors (FZDs). In order to achieve maximal effect on Wnt signaling by targeting the cell surface, we developed a synthetic antibody targeting six of the 10 human FZDs. We first identified an anti-FZD antagonist antibody (F2) with a specificity profile matching that of OMP-18R5, a monoclonal antibody that inhibits growth of many cancers by targeting FZD7, FZD1, FZD2, FZD5 and FZD8. We then used combinatorial antibody engineering by phage display to develop a variant antibody F2.A with specificity broadened to include FZD4. We confirmed that F2.A blocked binding of Wnt ligands, but not binding of Norrin, a ligand that also activates FZD4. Importantly, F2.A proved to be much more efficacious than either OMP-18R5 or F2 in inhibiting the growth of multiple RNF43-mutant pancreatic ductal adenocarcinoma cell lines, including patient-derived cells.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Carcinoma Ductal Pancreático/imunologia , Receptores Frizzled/imunologia , Neoplasias Pancreáticas/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos
9.
Proc Natl Acad Sci U S A ; 115(11): 2836-2841, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29476010

RESUMO

Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states.


Assuntos
Anticorpos/análise , Linfoma de Burkitt/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia/genética , Proteínas de Membrana/genética , Proteômica/métodos , Anticorpos/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Linfoma de Burkitt/metabolismo , Linhagem Celular Tumoral , Humanos , Leucemia/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
10.
ACS Chem Biol ; 11(4): 1058-65, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26745345

RESUMO

Polypeptides composed entirely of d-amino acids and the achiral amino acid glycine (d-proteins) inherently have in vivo properties that are proposed to be near-optimal for a large molecule therapeutic agent. Specifically, d-proteins are resistant to degradation by proteases and are anticipated to be nonimmunogenic. Furthermore, d-proteins are manufactured chemically and can be engineered to have other desirable properties, such as improved stability, affinity, and pharmacokinetics. Thus, a well-designed d-protein therapeutic would likely have significant advantages over l-protein drugs. Toward the goal of developing d-protein therapeutics, we previously generated RFX001.D, a d-protein antagonist of natural vascular endothelial growth factor A (VEGF-A) that inhibited binding to its receptor. However, RFX001.D is unstable at physiological temperatures (Tm = 33 °C). Here, we describe RFX037.D, a variant of RFX001.D with extreme thermal stability (Tm > 95 °C), high affinity for VEGF-A (Kd = 6 nM), and improved receptor blocking. Comparison of the two enantiomeric forms of RFX037 revealed that the d-protein is more stable in mouse, monkey, and human plasma and has a longer half-life in vivo in mice. Significantly, RFX037.D was nonimmunogenic in mice, whereas the l-enantiomer generated a strong immune response. These results confirm the potential utility of synthetic d-proteins as alternatives to therapeutic antibodies.


Assuntos
Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Calibragem , Dicroísmo Circular , Humanos , Espectrometria de Massas , Padrões de Referência , Ressonância de Plasmônio de Superfície
11.
Nat Immunol ; 17(1): 87-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26523866

RESUMO

The T cell antigen receptor (TCR)-peptide-major histocompatibility complex (MHC) interface is composed of conserved and diverse regions, yet the relative contribution of each in shaping recognition by T cells remains unclear. Here we isolated cross-reactive peptides with limited homology, which allowed us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR's cross-reactivity was rooted in highly similar recognition of an apical 'hot-spot' position in the peptide with tolerance of sequence variation at ancillary positions. Furthermore, we found a striking structural convergence onto a germline-mediated interaction between the TCR CDR1α region and the MHC α2 helix in twelve TCR-peptide-MHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hot spot, might place limits on peptide antigen cross-reactivity.


Assuntos
Antígenos/imunologia , Reações Cruzadas/imunologia , Ativação Linfocitária/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Sequência de Aminoácidos , Animais , Antígenos/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/imunologia , Ligação Proteica/imunologia , Conformação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química
12.
Immunity ; 35(5): 681-93, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22101157

RESUMO

T cell receptor (TCR) engagement of peptide-major histocompatibility complex (pMHC) is essential to adaptive immunity, but it is unknown whether TCR signaling responses are influenced by the binding topology of the TCR-peptide-MHC complex. We developed yeast-displayed pMHC libraries that enabled us to identify new peptide sequences reactive with a single TCR. Structural analysis showed that four peptides bound to the TCR with distinct 3D and 2D affinities using entirely different binding chemistries. Three of the peptides that shared a common docking mode, where key TCR-MHC germline interactions are preserved, induced TCR signaling. The fourth peptide failed to induce signaling and was recognized in a substantially different TCR-MHC binding mode that apparently exceeded geometric tolerances compatible with signaling. We suggest that the stereotypical TCR-MHC docking paradigm evolved from productive signaling geometries and that TCR signaling can be modulated by peptides that are recognized in alternative TCR-pMHC binding orientations.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Animais , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/metabolismo , Ligação Proteica/imunologia , Conformação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Reprodutibilidade dos Testes , Alinhamento de Sequência , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA