Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 96: 126-134, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496098

RESUMO

Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.


Assuntos
Neoplasias da Mama , Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Humanos , Feminino , Temperatura , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Termometria/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagens de Fantasmas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA