Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 94: 50-61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301450

RESUMO

Obesity results from a chronic excessive accumulation of adipose tissue due to a long-term imbalance between energy intake and expenditure. Available epidemiological and clinical data strongly support the links between obesity and certain cancers. Emerging clinical and experimental findings have improved our understanding of the roles of key players in obesity-associated carcinogenesis such as age, sex (menopause), genetic and epigenetic factors, gut microbiota and metabolic factors, body shape trajectory over life, dietary habits, and general lifestyle. It is now widely accepted that the cancer-obesity relationship depends on the site of cancer, the systemic inflammatory status, and micro environmental parameters such as levels of inflammation and oxidative stress in transforming tissues. We hereby review recent advances in our understanding of cancer risk and prognosis in obesity with respect to these players. We highlight how the lack of their consideration contributed to the controversy over the link between obesity and cancer in early epidemiological studies. Finally, the lessons and challenges of interventions for weight loss and better cancer prognosis, and the mechanisms of weight gain in survivors are also discussed.


Assuntos
Neoplasias , Obesidade , Feminino , Humanos , Obesidade/complicações , Obesidade/metabolismo , Prognóstico , Neoplasias/epidemiologia , Neoplasias/etiologia , Carcinogênese , Fatores de Risco
2.
Front Cell Dev Biol ; 11: 1072629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36727110

RESUMO

The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.

3.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361780

RESUMO

Parkinson's disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.


Assuntos
Autofagia/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/genética , Parte Compacta da Substância Negra/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Catalase/genética , Catalase/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/toxicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Commun Biol ; 4(1): 779, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163009

RESUMO

The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.


Assuntos
Água Corporal/metabolismo , Camelus/fisiologia , Colesterol/fisiologia , Rim/metabolismo , Animais , Aquaporina 2/fisiologia , Desidratação/metabolismo , Clima Desértico , Metabolismo dos Lipídeos , Masculino , Proteoma , ATPase Trocadora de Sódio-Potássio/fisiologia , Transcriptoma
5.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321809

RESUMO

The term ionone is derived from "iona" (Greek for violet) which refers to the violet scent and "ketone" due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of ß-carotene by ß-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and ß-pinene into α-and ß-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that ß-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. ß-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. ß-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and ß-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet's fragrance.


Assuntos
Norisoprenoides/química , Norisoprenoides/farmacologia , Odorantes , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Vias Biossintéticas , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fenômenos Químicos , Técnicas de Química Sintética , Mediadores da Inflamação/metabolismo , Norisoprenoides/metabolismo , Ligação Proteica , Receptores Odorantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Molecules ; 25(19)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007969

RESUMO

Physiological Glucocorticoids are important regulators of the immune system. Pharmacological GCs are in widespread use to treat inflammatory diseases. Adrenalectomy (ADX) has been shown to exacerbate renal injury through inflammation and oxidative stress that results in renal impairment due to depletion of GCs. In this study, the effect of myrcene to attenuate renal inflammation and oxidative stress was evaluated in the adrenalectomized rat model. Rats were adrenalectomized bilaterally or the adrenals were not removed after surgery (sham). Myrcene (50 mg/kg body weight, orally) was administered post ADX. Myrcene treatment resulted in significant downregulation of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) compared to untreated ADX rats. In addition, myrcene resulted in significant downregulation of immunomodulatory factors (IFNγ and NF-κB) and anti-inflammatory markers (IL-4 and IL-10) in treated ADX compared to untreated ADX. Myrcene significantly increased the antioxidant molecules (CAT, GSH, and SOD) and decreased MDA levels in treated ADX compared to untreated. Moreover, myrcene treatment reduced the expression of COX-2, iNOS, KIM-1, and kidney functional molecules (UREA, LDH, total protein, and creatinine) in ADX treated compared to ADX untreated. These results suggest that myrcene could be further developed as a therapeutic drug for treatment of kidney inflammation and injury.


Assuntos
Monoterpenos Acíclicos/farmacologia , Adrenalectomia , Alcenos/farmacologia , Inflamação/patologia , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Moléculas de Adesão Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Fatores Imunológicos/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Wistar , Superóxido Dismutase/metabolismo
7.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185705

RESUMO

Parkinson's disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug's multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.


Assuntos
Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Lycopodium/química , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Metaloproteinases da Matriz/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos Wistar , Rotenona , Superóxido Dismutase/metabolismo , alfa-Sinucleína/metabolismo
8.
Mol Biol Rep ; 46(3): 2643-2655, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30927158

RESUMO

Rilpivirine is a non-nucleoside reverse transcriptase inhibitor, recently developed as a drug of choice for initial anti-retroviral (ARV) treatment of HIV-1 infection, whereas estradiol is a major component of hormonal contraceptives. Both drugs have effects on lipid metabolism, impairment of adipocyte differentiation and alteration of adipose tissue distribution and function.This study investigated the effects of different concentrations of either rilpivirine or estradiol either alone or in combination on adipocyte differentiation and adipocytokines status in vitro in the absence and presence of ß-naphthoflavone, (BNF),a potent agonist of the aryl hydrocarbon receptor. 3T3-L1 human pre-adipocytes were cultured and differentiated with different concentrations of treatment drugs. After 10 days of differentiation procedure, cells were examined for their morphology and viability. Glycerol,adiponectin, leptin, resistin and interleukin-8 (IL-8) were quantified using commercially available kits. The results show that either rilpivirine or estradiol individually or during their combination can evoke significant increases in glycerol release and a concomitant significant decrease of adiponectin from adipocytes. These effects were dose-dependent. The effects of combined treatments were much larger than individual concentration for each drug. Both drugs had little of no effect on leptin levels, except for a small decrease with 10 µM rilpivirine alone or when combined with estradiol. In addition, both drugs evoked small increases in the release of resistin and interleukin-8 with significant values at higher doses compared to untreated adipocytes.When adipocytes were pretreated with BNF, either rilpivirine or, estradiol or when combined evoked a much larger release in glycerol and a much larger decrease in adiponectin compared to the absence of BNF. In contrast, BNF pretreatment had little of no effect on either leptin, resistin or IL-8 metabolism compared to the results obtained in the presence of either rilpivirine or estradiol alone or in combination.These results show that rilpivirine and estradiol either alone or when combined or pretreated with BNF can evoke marked effects on glycerol and cytokines levels from adipocytes. However, their mechanism (s) in inducing adipogenesis warrants further investigation of different transcription factors at gene expression levels.


Assuntos
Adipócitos/efeitos dos fármacos , Estradiol/farmacologia , Rilpivirina/farmacologia , beta-Naftoflavona/farmacologia , Células 3T3-L1/efeitos dos fármacos , Adipogenia/genética , Adipocinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Estradiol/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Leptina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Rilpivirina/metabolismo , beta-Naftoflavona/metabolismo
9.
Mol Cell Biochem ; 455(1-2): 109-118, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30478677

RESUMO

We investigated the effects of 20 days of dehydration and 20 days of dehydration followed by 72 h of rehydration on the gastric mucosa of the one-humped dromedary camel. The parameters addressed include biomarkers of oxidative stress, apoptosis, gastric epithelial histology, gastric neuropeptides, and their receptors. Nineteen clinically healthy, 4-5 year-old male dromedary camels were divided into three groups (five control camels, eight dehydrated for 20 days, six dehydrated for 20 days and then rehydrated for 72 h). Dehydration affected the oxidative stress biomarkers causing a significant increase in malondialdehyde, glutathione, nitric oxide, and catalase values compared with controls. Also the results revealed that dehydration caused different size cellular vacuoles and focal necrosis in the gastric mucosa. Rehydration for 72 h resulted in improvement in some parameters but was not enough to fully abolish the effect of dehydration. Dehydration caused significant increase in apoptotic markers; tumor necrosis factor α, caspases 8 and 3, BcL-x1 and TGFß whereas caspase 9, p53, Beclin 1, and PARP1 showed no significant change between the three groups indicating that apoptosis was initiated by the extrinsic pathway. Also there were significant increases in prostaglandin E2 receptors and somatostatin in plasma and gastric epithelium homogenate, and a significant decrease in cholecystokinin-8 receptors. A significant decrease of hydrogen potassium ATPase enzyme activity was also observed. Pepsinogen C was not affected by dehydration. It is concluded that long-term dehydration induces oxidative stress and apoptosis in camel gastric mucosa and that camels adjust gastric functions during dehydration towards water economy. More than 72 h are needed before all the effects of dehydration are reversed by rehydration.


Assuntos
Apoptose , Camelus/metabolismo , Desidratação/metabolismo , Mucosa Gástrica/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Animais , Biomarcadores/metabolismo , Desidratação/patologia , Desidratação/veterinária , Mucosa Gástrica/patologia , Masculino
10.
J Ethnopharmacol ; 195: 159-165, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27825990

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. AIM OF THE STUDY: We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. MATERIALS AND METHODS: Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. RESULTS: Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. CONCLUSIONS: These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation.


Assuntos
Doenças Cerebelares/prevenção & controle , Cerebelo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Garcinia kola/química , Hipoglicemiantes/farmacologia , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Preparações de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Doenças Cerebelares/sangue , Doenças Cerebelares/etiologia , Doenças Cerebelares/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/patologia , Hipoglicemiantes/isolamento & purificação , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Fitoterapia , Preparações de Plantas/isolamento & purificação , Plantas Medicinais , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos Wistar , Estreptozocina , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/metabolismo
11.
BMC Neurosci ; 17(1): 61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586269

RESUMO

BACKGROUND: Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. RESULTS: Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1ß and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. CONCLUSION: Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.


Assuntos
Medula Suprarrenal/fisiopatologia , Citocinas/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Estresse Oxidativo/fisiologia , Adrenalectomia , Animais , Morte Celular/fisiologia , Corticosterona/sangue , Hipocampo/patologia , Masculino , Modelos Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Wistar , Fatores de Tempo
12.
Mar Drugs ; 14(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322291

RESUMO

The frondosides are triterpenoid glycosides from the Atlantic sea cucumber Cucumaria frondosa. Frondoside A inhibits growth, invasion, metastases and angiogenesis and induces apoptosis in diverse cancer types, including pancreatic cancer. We compared the growth inhibitory effects of three frondosides and their aglycone and related this to the pharmocokinetics and route of administration. Frondoside A potently inhibited growth of pancreatic cancer cells with an EC50 of ~1 µM. Frondoside B was less potent (EC50 ~2.5 µM). Frondoside C and the aglycone had no effect. At 100 µg/kg, frondoside A administered to CD2F1 mice as an i.v. bolus, the Cpmax was 129 nM, Cltb was 6.35 mL/min/m², and half-life was 510 min. With i.p. administration the Cpmax was 18.3 nM, Cltb was 127 mL/min/m² and half-life was 840 min. Oral dosing was ineffective. Frondoside A (100 µg/kg/day i.p.) markedly inhibited growth cancer xenografts in nude mice. The same dose delivered by oral gavage had no effect. No evidence of acute toxicity was seen with frondoside A. Frondoside A is more potent inhibitor of cancer growth than other frondosides. The glycoside component is essential for bioactivity. Frondoside A is only effective when administered systemically. Based on the current and previous studies, frondoside A appears safe and may be valuable in the treatment of cancer.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/farmacocinética , Glicosídeos/farmacologia , Glicosídeos/farmacocinética , Neoplasias Pancreáticas/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/farmacocinética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/metabolismo , Pepinos-do-Mar/química
13.
Drug Des Devel Ther ; 9: 4943-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357462

RESUMO

Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP(+)). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (-)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure-function relationship studies.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Simulação de Acoplamento Molecular , Polifenóis/metabolismo , Polifenóis/farmacologia , Sítios de Ligação , Domínio Catalítico , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Catequina/farmacologia , Colesterol/metabolismo , Curcumina/química , Curcumina/metabolismo , Curcumina/farmacologia , Humanos , Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/química , NADP/metabolismo , Polifenóis/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
14.
Oxid Med Cell Longev ; 2015: 329306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167240

RESUMO

There are a great number of reports with assertions that oxidative stress is produced by organophosphorus compound (OPC) poisoning and is a cofactor of mortality and morbidity in OPC toxicity. In addition, antioxidants have been suggested as adjuncts to standard therapy. However, there is no substantial evidence for the benefit of the use of antioxidants in survival after acute intoxication of OPCs. The present study was conducted to assess the effectiveness of three non-enzymatic antioxidants (NEAOs), N-acetylcysteine (NAC), glutathione (GSH), and ascorbic acid (AA), in acute intoxication of adult male Wister rats with paraoxon. The efficacy of the antioxidants was estimated as both a pretreatment and a concurrent application along with the standard oxime, pralidoxime (2-PAM). Relative risk of death after 48 hours of application was estimated by Cox regression analysis. The results revealed no benefit of either tested NEAO to the improvement in survival of experimental rats. The application of these antioxidants was found to be deleterious when administered along with pralidoxime compared to the treatment with pralidoxime alone. It has been concluded that the tested non-enzymatic antioxidants are not useful in acute toxicity for improving survival rates. However, the individual toxic dynamics of diversified OPCs should not be overlooked and further studies with different OPCs are suggested.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Glutationa/farmacologia , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Paraoxon/toxicidade , Animais , Masculino , Compostos de Pralidoxima/toxicidade , Ratos , Ratos Wistar , Risco
15.
Virol J ; 12: 28, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25851649

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is an oncogenic virus implicated in the pathogenesis of several human malignancies. However, due to the lack of a suitable animal model, a number of fundamental questions pertaining to the biology of EBV remain poorly understood. Here, we explore the potential of rabbits as a model for EBV infection and investigate the impact of immunosuppression on viral proliferation and gene expression. METHODS: Six healthy New Zealand white rabbits were inoculated intravenously with EBV and blood samples collected prior to infection and for 7 weeks post-infection. Three weeks after the last blood collection, animals were immunosuppressed with daily intramuscular injections of cyclosporin A at doses of 20 mg/kg for 15 days and blood collected twice a week from each rabbit. The animals were subsequently sacrificed and tissues from all major organs were collected for subsequent analysis. RESULTS: Following intravenous inoculation, all 6 rabbits seroconverted with raised IgG and IgM titres to EBV, but viral DNA in peripheral blood mononuclear cells (PBMCs) could only be detected intermittently. Following immunosuppression however, EBV DNA could be readily detected in PBMCs from all 4 rabbits that survived the treatment. Quantitative PCR indicated an increase in EBV viral load in PBMCs as the duration of immunosuppression increased. At autopsy, splenomegaly was seen in 3/4 rabbits, but spleens from all 4 rabbit were EBV PCR positive. EBER-in situ hybridization and immunoshistochemistry revealed the presence of a large number of EBER-positive and LMP-1 positive lymphoblasts in the spleens of 3/4 rabbits. To a lesser extent, EBER-positive cells were also seen in the portal tract regions of the liver of these rabbits. Western blotting indicated that EBNA-1 and EBNA-2 were also expressed in the liver and spleen of infected animals. CONCLUSION: EBV can infect healthy rabbits and the infected cells proliferate when the animals are immunocompromised. The infected cells expressed several EBV-latent gene products which are probably driving the proliferation, reminiscent of what is seen in immunocompromised individuals. Further work is required to explore the potential of rabbits as an animal model for studying EBV biology and tumorigenesis.


Assuntos
Proliferação de Células , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/fisiopatologia , Herpesvirus Humano 4/genética , Humanos , Terapia de Imunossupressão , Masculino , Coelhos , Baço/patologia , Baço/virologia
16.
CNS Neurol Disord Drug Targets ; 13(8): 1397-405, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25345510

RESUMO

Neuroinflammation (NI) contributes to the pathogenesis of several neurodegenerative disorders. Epidemiological and a few animal studies have shown that chronic exposure of organophosphorus compounds (OPC) may cause neuronal injury and predispose to neuro- as well as psychotic disorders in conjunction with NI. However, in vivo studies are meager and do not represent the entire toxicologically diversified OPC. The present study aimed to investigate the result of non-observable adverse effect level dose of a highly toxic OPC, terbufos sulfone (TBS), on sub-chronic exposure on the status of proinflammatory cytokines; interleukin-1ß, interleukin-6 and tumor necrosis factor-α in rats brain. In addition, lactate dehydrogenase, nitric oxide and reduced glutathione were also determined in brain. Red blood cell acetylcholinesterase was measured weekly. Total of four groups' saline control, diabetes control, non-diabetes TBS and diabetes treated with TBS were employed in the study. Control groups received saline and the experimental groups were injected with TBS intraperitonealy for fifteen days daily. Twenty four hours after the last injection, the animals were euthanized for collection of brain and serum samples. The study showed significant elevation of interleukin-6, tumor necrosis factor-α and lactate dehydrogenase in brain of TBS treated groups, while the presence of interleukin-1ß was significantly greater in the non-diabetes TBS treated group when compared with saline control. The increase was observed to be independent of acetylcholinesterase level and diabetes condition. The change in reduced glutathione was modest as compared with control. Based on the findings, the study concludes that the non-observable adverse effect level dose of TBS has potential to cause NI and subsequent neurodegeneration, a remarkable sign of many chronic neuronal and psychotic disorders. Further studies with prolonged exposure and other neurodegenerative parameters are warranted.


Assuntos
Citocinas/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Encefalite/etiologia , Encefalite/metabolismo , Compostos Organotiofosforados/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Glicemia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar
17.
J Venom Res ; 5: 16-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25035794

RESUMO

Two structurally related (48.6% amino acid sequence identity) peptides with cytotoxic activity against human non-small cell lung adenocarcinoma A549 cells were purified from the venom of the Eastern green mamba Dendroaspis angusticeps using reversed phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by mass fingerprinting of tryptic digests. The more potent peptide (LC50 against A549 cells = 56±4µg/ml) was identical to the previously described toxin C13S1C1 and the less active peptide (LC50 against A549 cells = 106±5µg/ml) was identical to toxin F-VIII. Toxin C13S1C1 was also cytotoxic against breast adenocarcinoma MDA-MB-231 cells (LC50 = 62±2µg/ml) and colorectal adenocarcinoma HT-29 cells (LC50 = 110±4µg/ml). Although the peptide was appreciably less hemolytic activity against human erythrocytes (LC50 >600µg/ml), it was cytotoxic to human umbilical vein endothelial HUVEC cells (57±3µg/ml) indicating no differential activity against cell lines derived from neoplastic tissues. Toxin F-VIII was not cytotoxic to MDA-MB-231, HT-29 cells, and HUVEC cells at concentrations up to 300µg/ml and was not hemolytic at concentrations up to 1mg/ml. Neither peptide inhibited growth of reference strains of Escherichia coli or Staphylococcus aureus (MIC values >200µg/ml).

18.
BMC Vet Res ; 9: 232, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24252635

RESUMO

BACKGROUND: The objective of this study was to provide for the first time data on plasma catecholamines, cortisol, glutathione and malondialdehyde after long term dehydration (20 days) in the presence and absence of angiotensin II (Ang II) AT1 receptor blocker (losartan) versus levels in time-matched, non-dehydrated control camels and to record the responses of glutathione and malondialdehyde activity in liver and kidney homogenates in control, dehydrated-losartan treated and dehydrated camels. Eighteen male camels were studied, six hydrated (control group), six dehydrated and treated with losartan (treated group) and six dehydrated not treated (dehydrated). RESULTS: Plasma levels of norepinephrine and dopamine were significantly increased (P < 0.01) in both treated and dehydrated groups compared to time matched control, whereas Plasma epinephrine level showed significant decrease (P < 0.05) in both treated and dehydrated groups compared to control. Plasma cortisol also showed significant increase (P < 0.01) in both treated and dehydrated groups compared to control. Glutathione levels in plasma, liver and kidney homogenates for both treated and dehydrated groups reveled significant increase (P < 0.05) Likewise, malondialdehyde levels in plasma, liver and kidney homogenates were substantially and significantly increased in both treated and dehydrated groups. CONCLUSION: In conclusion, the results of this study demonstrated that dehydration substantially increased the circulating levels of norepinephrine, dopamine and cortisol but decreased plasma epinephrine. Similarly, losartan showed similar effects to that of dehydration. In addition, this investigation showed dehydration alone or in combination with losartan induced significant increments in glutathione and malondialdehyde activities in plasma, liver and kidney homogenates, presumably in order to counteract the potentially damaging effects of free radicals. Blockade of angiotensin II AT1 receptors did not alter significantly the response of dehydration in any of these indices.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Camelus/fisiologia , Desidratação/metabolismo , Losartan/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Privação de Água/fisiologia , Animais , Antioxidantes/metabolismo , Camelus/sangue , Catecolaminas/sangue , Glutationa/sangue , Hidrocortisona/sangue , Masculino , Malondialdeído/sangue , Receptor Tipo 1 de Angiotensina/genética , Estresse Fisiológico/fisiologia
19.
Curr Alzheimer Res ; 10(6): 660-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627756

RESUMO

We have shown previously, that mice lacking tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) exhibit greater hippocampal neurodegeneration, suggesting that TNFR1 may be protective in kainic acid (KA)-induced neurotoxicity. Here, we aim to clarify the role of TNF-α in neurodegenerative disorders and to elucidate its potential signaling pathways. TNF-α knockout (KO) mice and wild-type (WT) mice were treated with KA intranasally and, seizure severity measures obtained, Behavioral tests, including Elevated Plus-Maze™, open-field, Y-maze were also performed. Five days following KA treatment, immunohistochemical methods were used to assess neuronal degeneration and glial activation. The production of nitric oxide (NO) and the expression of nuclear factor kappaB (NF-κB) and AKT in the hippocampus were also measured. Compared with WT mice, TNF-α KO mice were more susceptible to KA-induced neurotoxicity, as demonstrated by more severe seizures, measurable behavior changes, greater neuronal degeneration in hippocampus, elevated glial activation and NO production. Additionally, KA-treatment up-regulated the expression of NFκB in TNF-α KO mice to a greater degree than in KA-treated WT mice. We conclude that TNF-α deficiency adversely influences KA-induced neurotoxicity and that TNF-α may play a protective role in KA-induced neurotoxicity via the down-regulation of NFκB signaling pathway.


Assuntos
NF-kappa B/metabolismo , Convulsões/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Convulsões/induzido quimicamente , Convulsões/patologia
20.
Curr Alzheimer Res ; 10(6): 609-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627758

RESUMO

The prevalence of diabetes mellitus (DM) continues to increase because of sedentary life style and inappropriate diet. DM is one of the most common metabolic diseases, affecting more than 240 million people worldwide. It is projected that the number of people with DM will continue to increase in the next decade. Alzheimer disease (AD) is the most common cause of dementia, and affects over 24 million people globally, mostly senior citizens. The worldwide prevalence of AD is estimated to double in the next 20 years. How are these two chronic and debilitating diseases similar? Do they have common denominators? AD is similar to DM in many ways, in that both are associated with defective insulin release and/or signalling, impaired glucose uptake, amyloidosis, increased oxidative stress, stimulation of the apoptotic pathway, angiopathy, abnormal lipid peroxidation, ageing (in type 2 DM), brain atrophy, increased formation of advanced glycation end products and tau phosphorylation, impaired lipid metabolism and mitochondrial pathology. The pathogenesis of both AD and DM has genetic as well as environmental components. Both can also cause impaired cognition and dementia. All of these common denominators indicate that AD and DM share a lot of factors in terms of pathophysiology, histopathology and clinical outcome. These similarities can be used in the search for and design of effective pharmacotherapy for AD, since potent therapeutic agents such as insulin, incretins, oral hypoglycaemic agents and antioxidants used in the management of DM may play a key role in the treatment of patients with AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Diabetes Mellitus/fisiopatologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA