Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Frailty Aging ; 10(2): 110-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575699

RESUMO

BACKGROUND: The Geroscience field focuses on the core biological mechanisms of aging, which are involved in the onset of age-related diseases, as well as declines in intrinsic capacity (IC) (body functions) leading to dependency. A better understanding on how to measure the true age of an individual or biological aging is an essential step that may lead to the definition of putative markers capable of predicting healthy aging. OBJECTIVES: The main objective of the INStitute for Prevention healthy agIng and medicine Rejuvenative (INSPIRE) Platform initiative is to build a program for Geroscience and healthy aging research going from animal models to humans and the health care system. The specific aim of the INSPIRE human translational cohort (INSPIRE-T cohort) is to gather clinical, digital and imaging data, and perform relevant and extensive biobanking to allow basic and translational research on humans. METHODS: The INSPIRE-T cohort consists in a population study comprising 1000 individuals in Toulouse and surrounding areas (France) of different ages (20 years or over - no upper limit for age) and functional capacity levels (from robustness to frailty, and even dependency) with follow-up over 10 years. Diversified data are collected annually in research facilities or at home according to standardized procedures. Between two annual visits, IC domains are monitored every 4-month by using the ICOPE Monitor app developed in collaboration with WHO. Once IC decline is confirmed, participants will have a clinical assessment and blood sampling to investigate markers of aging at the time IC declines are detected. Biospecimens include blood, urine, saliva, and dental plaque that are collected from all subjects at baseline and then, annually. Nasopharyngeal swabs and cutaneous surface samples are collected in a large subgroup of subjects every two years. Feces, hair bulb and skin biopsy are collected optionally at the baseline visit and will be performed again during the longitudinal follow up. EXPECTED RESULTS: Recruitment started on October 2019 and is expected to last for two years. Bio-resources collected and explored in the INSPIRE-T cohort will be available for academic and industry partners aiming to identify robust (set of) markers of aging, age-related diseases and IC evolution that could be pharmacologically or non-pharmacologically targetable. The INSPIRE-T will also aim to develop an integrative approach to explore the use of innovative technologies and a new, function and person-centered health care pathway that will promote a healthy aging.


Assuntos
Bancos de Espécimes Biológicos , Geriatria , Envelhecimento Saudável , Pesquisa Translacional Biomédica , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , França , Humanos , Pessoa de Meia-Idade
2.
Oncogenesis ; 5: e209, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26974204

RESUMO

The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.

3.
Cell Death Differ ; 12(5): 492-501, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15776002

RESUMO

Our previous results demonstrated that expressing the GTPase ras homolog gene family, member B (RhoB) in radiosensitive NIH3T3 cells increases their survival following 2 Gy irradiation (SF2). We have first demonstrated here that RhoB expression inhibits radiation-induced mitotic cell death. RhoB is present in both a farnesylated and a geranylgeranylated form in vivo. By expressing RhoB mutants encoding for farnesylated (RhoB-F cells), geranylgeranylated or the CAAX deleted form of RhoB, we have then shown that only RhoB-F expression was able to increase the SF2 value by reducing the sensitivity of these cells to radiation-induced mitotic cell death. Moreover, RhoB-F cells showed an increased G2 arrest and an inhibition of centrosome overduplication following irradiation mediated by the Rho-kinase, strongly suggesting that RhoB-F may control centrosome overduplication during the G2 arrest after irradiation. Overall, our results for the first time clearly implicate farnesylated RhoB as a crucial protein in mediating cellular resistance to radiation-induced nonapoptotic cell death.


Assuntos
Morte Celular/efeitos da radiação , Centrossomo/patologia , Centrossomo/efeitos da radiação , Mitose/efeitos da radiação , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Sobrevivência Celular/efeitos da radiação , Citometria de Fluxo , Fluoresceína-5-Isotiocianato , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes , Fase G2/efeitos da radiação , Raios gama , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Proteína rhoB de Ligação ao GTP/genética
4.
Int J Cancer ; 91(5): 718-22, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11267986

RESUMO

Oncogenic mutations of the ras gene leading to constitutive activation of downstream effectors have been detected in a wide spectrum of human cancers (pancreas, thyroid, colon, non-small-cell lung cancer). Membrane anchorage of Ras, required for functional activity in signal transduction, is facilitated by post-translational modifications resulting in covalent attachment of a farnesyl group to the cysteine in the C-terminal CAAX motif. This attachment is mediated by farnesyltransferase (FTase). Here, we report a novel FTase inhibitor, BIM-46228, which showed (i) specific inhibition of purified human FTase enzyme, (ii) inhibition of proliferation in vitro in a large spectrum of human tumor cell lines, (iii) inhibition of growth of human tumor xenografts in athymic nude mice treated by per os administration and (iv) the benefits of in vitro combination of its activity with chemotherapy or radiotherapy.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Imidazóis/uso terapêutico , Lovastatina/análogos & derivados , Nitrilas/uso terapêutico , Peptídeos/uso terapêutico , Células 3T3 , Animais , Antibacterianos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Western Blotting , Divisão Celular , Terapia Combinada , Dimetilaliltranstransferase/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Farnesiltranstransferase , Feminino , Genes ras/genética , Células HeLa , Humanos , Imidazóis/química , Concentração Inibidora 50 , Lovastatina/uso terapêutico , Camundongos , Camundongos Nus , Modelos Químicos , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/radioterapia , Nitrilas/química , Paclitaxel/uso terapêutico , Fatores de Tempo , Células Tumorais Cultivadas
5.
Radiat Res ; 152(4): 404-11, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10477917

RESUMO

In this paper, we describe the effect of the inhibitor of farnesyltransferase (FTI-277) on radioresistance induced by the 24-kDa isoform of FGF2 in human cells expressing wild-type RAS. Treatment with FTI-277 (20 microM) for 48 h prior to irradiation led to a significant decrease in survival of radioresistant cells expressing the 24-kDa isoform (HeLa 3A) but had no effect on the survival of control cells (HeLa PINA). The radiosensitizing effect of FTI-277 is accompanied by a stimulation of postmitotic cell death in HeLa 3A cells and by a reduction in G(2)/M-phase arrest in both cell types. These results clearly demonstrate that at least one farnesylated protein is involved in the regulation of the radioresistance induced by the 24-kDa isoform of FGF2. Furthermore, the radiation-induced G(2)/M-phase arrest is also under the control of farnesylated protein. This work also demonstrates that FTase inhibitors may be effective radiosensitizers of certain human tumors with wild-type RAS.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Metionina/análogos & derivados , Tolerância a Radiação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Farnesiltranstransferase , Células HeLa , Humanos , Metionina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA