Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1166641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868194

RESUMO

The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.

2.
Ophthalmologie ; 119(6): 582-590, 2022 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-35925367

RESUMO

BACKGROUND: The German Ophthalmological Society (DOG) regularly records the scientific activities of ophthalmological research institutions in Germany. OBJECTIVE: With this publication the DOG wants to make the performance of scientific ophthalmology in Germany transparent and increase the options for future research cooperation with facilities of research institutions. METHODS: Systematic survey of German research centers in ophthalmology. RESULTS: The current research map records the data from 41 German research centers for the reporting period 2018-2020. Compared to previous editions of the research map, there has been a significant increase in scientific activity. The number of studies reported rose to 496. The number of government funded research projects (n = 121) and projects funded by foundations (n = 108) also increased. Furthermore, the number of scientific publications has almost doubled: while 1919 were published in the period from 2012 to 2014 and 2305 in the period from 2015 to 2017, there were 4215 in the current reporting period. The map also reports on a continuous increase in the number of young scientists in ophthalmology. CONCLUSION: The research map demonstrates the performance of German scientific ophthalmology. At the same time, the need for research in ophthalmology remains high because many diseases that affect the eyes are not yet or not yet completely curable.


Assuntos
Oftalmologia , Médicos , Previsões , Alemanha , Humanos , Sociedades Médicas
3.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35482419

RESUMO

Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid-derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Células Ependimogliais , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia
4.
Sci Rep ; 12(1): 870, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042906

RESUMO

Diagnosis of myelodysplastic syndrome (MDS) mainly relies on a manual assessment of the peripheral blood and bone marrow cell morphology. The WHO guidelines suggest a visual screening of 200 to 500 cells which inevitably turns the assessor blind to rare cell populations and leads to low reproducibility. Moreover, the human eye is not suited to detect shifts of cellular properties of entire populations. Hence, quantitative image analysis could improve the accuracy and reproducibility of MDS diagnosis. We used real-time deformability cytometry (RT-DC) to measure bone marrow biopsy samples of MDS patients and age-matched healthy individuals. RT-DC is a high-throughput (1000 cells/s) imaging flow cytometer capable of recording morphological and mechanical properties of single cells. Properties of single cells were quantified using automated image analysis, and machine learning was employed to discover morpho-mechanical patterns in thousands of individual cells that allow to distinguish healthy vs. MDS samples. We found that distribution properties of cell sizes differ between healthy and MDS, with MDS showing a narrower distribution of cell sizes. Furthermore, we found a strong correlation between the mechanical properties of cells and the number of disease-determining mutations, inaccessible with current diagnostic approaches. Hence, machine-learning assisted RT-DC could be a promising tool to automate sample analysis to assist experts during diagnosis or provide a scalable solution for MDS diagnosis to regions lacking sufficient medical experts.


Assuntos
Síndromes Mielodisplásicas
5.
Stem Cells ; 39(7): 882-896, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657251

RESUMO

Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.


Assuntos
Células-Tronco Pluripotentes , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Transplante de Células-Tronco , Animais , Camundongos , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Células Ganglionares da Retina/patologia
6.
Stem Cell Reports ; 14(3): 374-389, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160519

RESUMO

Maintenance of a healthy photoreceptor-retinal pigment epithelium (RPE) interface is essential for vision. At the center of this interface, apical membrane protrusions stemming from the RPE ensheath photoreceptor outer segments (POS), and are possibly involved in the recycling of POS through phagocytosis. The molecules that regulate POS ensheathment and its relationship to phagocytosis remain to be deciphered. By means of ultrastructural analysis, we revealed that Mer receptor tyrosine kinase (MERTK) ligands, GAS6 and PROS1, rather than αVß5 integrin receptor ligands, triggered POS ensheathment by human embryonic stem cell (hESC)-derived RPE. Furthermore, we found that ensheathment is required for POS fragmentation before internalization. Consistently, POS ensheathment, fragmentation, and internalization were abolished in MERTK mutant RPE, and rescue of MERTK expression in retinitis pigmentosa (RP38) patient RPE counteracted these defects. Our results suggest that loss of ensheathment due to MERTK dysfunction might contribute to vision impairment in RP38 patients.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/enzimologia , Epitélio Pigmentado da Retina/metabolismo , c-Mer Tirosina Quinase/metabolismo , Linhagem Celular , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Ligantes , Mutação/genética , Fagocitose , Receptores de Vitronectina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Epitélio Pigmentado da Retina/ultraestrutura , c-Mer Tirosina Quinase/genética
7.
Nat Commun ; 10(1): 4524, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586094

RESUMO

A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests. Subsequently, we generate cone photoreceptors from human induced pluripotent stem cells, expressing the chloride pump Jaws. After transplantation into blind mice, we observe light-driven responses at the photoreceptor and ganglion cell levels. These results demonstrate that structural and functional retinal repair is possible by combining stem cell therapy and optogenetics.


Assuntos
Engenharia Celular/métodos , Optogenética/métodos , Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células/métodos , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Células HEK293 , Halorrodopsinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética , Rodopsina/genética , Transfecção , Resultado do Tratamento
8.
Adv Exp Med Biol ; 1186: 141-170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31654389

RESUMO

Developing successful surgical strategies to deliver cell therapeutics to the back of the eye is an essential pillar to success for stem cell-based applications in blinding retinal diseases. Within this chapter, we have attempted to gather all key considerations during preclinical animal trials.Guidance is provided for choices on animal models, options for immunosuppression, as well as anesthesia. Subsequently we cover surgical strategies for RPE graft delivery, both as suspension as well as in monolayers in small rodents, rabbits, pigs, and nonhuman primate. A detailed account is given in particular on animal variations in vitrectomy and subretinal surgery, which requires a considerable learning curve, when transiting from human to animal. In turn, however, many essential subretinal implantation techniques in large-eyed animals are directly transferrable to human clinical trial protocols.A dedicated subchapter on photoreceptor replacement provides insights on preparation of suspension as well as sheet grafts, to subsequently outline the basics of subretinal delivery via both the transscleral and transvitreal route. In closing, a future outlook on vision restoration through retinal cell-based therapeutics is presented.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Retina , Doenças Retinianas , Epitélio Pigmentado da Retina , Animais , Humanos , Terapia de Imunossupressão , Modelos Animais , Células Fotorreceptoras/citologia , Retina/cirurgia , Doenças Retinianas/cirurgia , Doenças Retinianas/terapia , Epitélio Pigmentado da Retina/cirurgia
9.
Cytometry A ; 95(11): 1145-1157, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31107590

RESUMO

Distinct cell-types within the retina are mainly specified by morphological and molecular parameters, however, physical properties are increasingly recognized as a valuable tool to characterize and distinguish cells in diverse tissues. High-throughput analysis of morpho-rheological features has recently been introduced using real-time deformability cytometry (RT-DC) providing new insights into the properties of different cell-types. Rod photoreceptors represent the main light sensing cells in the mouse retina that during development forms apically the densely packed outer nuclear layer. Currently, enrichment and isolation of photoreceptors from retinal primary tissue or pluripotent stem cell-derived organoids for analysis, molecular profiling, or transplantation is achieved using flow cytometry or magnetic activated cell sorting approaches. However, such purification methods require genetic modification or identification of cell surface binding antibody panels. Using primary retina and embryonic stem cell-derived retinal organoids, we characterized the inherent morpho-mechanical properties of mouse rod photoreceptors during development based on RT-DC. We demonstrate that rods become smaller and more compliant throughout development and that these features are suitable to distinguish rods within heterogenous retinal tissues. Hence, physical properties should be considered as additional factors that might affect photoreceptor differentiation and retinal development besides representing potential parameters for label-free sorting of photoreceptors. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Separação Celular/métodos , Células-Tronco Embrionárias/citologia , Citometria de Fluxo/métodos , Organoides/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Diferenciação Celular/genética , Imunofenotipagem , Camundongos , Retina/citologia
10.
Stem Cells ; 37(5): 609-622, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681766

RESUMO

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Assuntos
Diferenciação Celular/genética , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/terapia , Animais , Linhagem da Célula/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Organoides/transplante , Células-Tronco Pluripotentes/transplante , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Transcriptoma/genética
11.
Prog Retin Eye Res ; 69: 1-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30445193

RESUMO

The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.


Assuntos
Células Fotorreceptoras de Vertebrados/transplante , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos , Animais , Comunicação Celular/fisiologia , Citoplasma/transplante , Humanos , Células Fotorreceptoras de Vertebrados/imunologia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/tendências
12.
Dev Biol ; 433(2): 132-143, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291970

RESUMO

A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application.


Assuntos
Organoides/transplante , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Técnicas de Cultura de Tecidos , Animais , Técnicas de Reprogramação Celular , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Morfogênese , Células Fotorreceptoras de Vertebrados/transplante , Retina/citologia , Especificidade da Espécie , Pesquisa Translacional Biomédica
13.
Invest Ophthalmol Vis Sci ; 57(7): 3509-20, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367586

RESUMO

PURPOSE: Preclinical studies on photoreceptor transplantation provided evidence for restoration of visual function with pluripotent stem cells considered as a potential source for sufficient amounts of donor material. Adequate preclinical models representing retinal disease conditions of potential future patients are needed for translation research. Here we compared transplant integration in mouse models with mild (prominin1-deficient; Prom1-/-) or severe (cone photoreceptor function loss 1/rhodopsin-deficient double-mutant; Cpfl1/Rho-/-) cone-rod degeneration. METHODS: For photoreceptor transplant production, we combined the mouse embryonic stem cell retinal organoid system with rhodopsin-driven GFP cell labeling by recombinant adeno-associated virus (AAV). Organoid-derived photoreceptors were enriched by CD73-based magnetic-activated cell sorting (MACS) and transplanted subretinally into wild-type, Prom1-/- and Cpfl1/Rho-/- hosts. The survival, maturation, and synapse formation of donor cells was analyzed by immunohistochemistry. RESULTS: Retinal organoids yielded high photoreceptor numbers that were further MACS-enriched to 85% purity. Grafted photoreceptors survived in the subretinal space of all mouse models. Some cells integrated into wild-type as well as Prom1-/- mouse retinas and acquired a mature morphology, expressing rod and synaptic markers in close proximity to second-order neurons. In contrast, in the novel Cpfl1/Rho-/- model with complete photoreceptor degeneration, transplants remained confined to the subretinal space, expressed rod-specific but only reduced synaptic markers, and did not acquire mature morphology. CONCLUSIONS: Comparison of photoreceptor grafts in preclinical models with incomplete or complete photoreceptor loss, showed differential transplant success with effective and impaired integration, respectively. Thus, Cpfl1/Rho-/- mice represent a potential benchmark model resembling patients with severe retinal degeneration to optimize photoreceptor replacement therapies.


Assuntos
Distrofias de Cones e Bastonetes/cirurgia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Transplante de Células-Tronco/métodos , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/cirurgia , Células-Tronco/citologia
14.
Biochimie ; 125: 171-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059514

RESUMO

Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Luz , Fosforilação Oxidativa/efeitos da radiação , ATPases Translocadoras de Prótons/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Animais , Feminino , Masculino , Camundongos
15.
PLoS Genet ; 12(1): e1005811, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26796962

RESUMO

Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics; however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod-specific PRPH2 mutations is rather characterized by PRPH2 downregulation and impaired protein localization.


Assuntos
Periferinas/genética , Splicing de RNA/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Animais , Regulação da Expressão Gênica , Humanos , Íntrons , Camundongos , Periferinas/biossíntese , Mutação Puntual , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia
16.
Front Syst Neurosci ; 10: 105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28105007

RESUMO

Vision represents one of the main senses for humans to interact with their environment. Our sight relies on the presence of fully functional light sensitive cells - rod and cone photoreceptors - allowing us to see under dim (rods) and bright (cones) light conditions. Photoreceptor degeneration is one of the major causes for vision impairment in industrialized countries and it is highly predominant in the population above the age of 50. Thus, with the continuous increase in life expectancy it will make retinal degeneration reach an epidemic proportion. To date, there is no cure established for photoreceptor loss, but several therapeutic approaches, spanning from neuroprotection, pharmacological drugs, gene therapy, retinal prosthesis, and cell (RPE or photoreceptor) transplantation, have been developed over the last decade with some already introduced in clinical trials. In this review, we focus on current developments in photoreceptor transplantation strategies, its major breakthroughs, current limitations and the next challenges to translate such cell-based approaches toward clinical application.

17.
J Biomed Opt ; 20(3): 036018, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25822955

RESUMO

Cell transplantation and stem cell therapy are promising approaches for regenerative medicine and are of interest to researchers and clinicians worldwide. However, currently, no imaging technique that allows three-dimensional in vivo inspection of therapeutically administered cells in host tissues is available. Therefore, we investigate magnetomotive optical coherence tomography (MM-OCT) of cells labeled with magnetic particles as a potential noninvasive cell tracking method. We develop magnetomotive imaging of mesenchymal stem cells for future cell therapy monitoring. Cells were labeled with fluorescent iron oxide nanoparticles, embedded in tissue-mimicking agar scaffolds, and imaged using a microscope setup with an integrated MM-OCT probe. Magnetic particle-induced motion in response to a pulsed magnetic field of 0.2 T was successfully detected by OCT speckle variance analysis, and cross-sectional and volumetric OCT scans with highlighted labeled cells were obtained. In parallel, fluorescence microscopy and laser speckle reflectometry were applied as two-dimensional reference modalities to image particle distribution and magnetically induced motion inside the sample, respectively. All three optical imaging modalities were in good agreement with each other. Thus, magnetomotive imaging using iron oxide nanoparticles as cellular contrast agents is a potential technique for enhanced visualization of selected cells in OCT.


Assuntos
Lasers , Magnetismo , Células-Tronco Mesenquimais , Microscopia/métodos , Nanopartículas , Tomografia de Coerência Óptica/métodos , Humanos , Transplante de Células-Tronco Mesenquimais
18.
Stem Cells ; 33(1): 79-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25183393

RESUMO

Human daylight vision depends on cone photoreceptors and their degeneration results in visual impairment and blindness as observed in several eye diseases including age-related macular degeneration, cone-rod dystrophies, or late stage retinitis pigmentosa, with no cure available. Preclinical cell replacement approaches in mouse retina have been focusing on rod dystrophies, due to the availability of sufficient donor material from the rod-dominated mouse retina, leaving the development of treatment options for cone degenerations not well studied. Thus, an abundant and traceable source for donor cone-like photoreceptors was generated by crossing neural retina leucine zipper-deficient (Nrl(-/-) ) mice with an ubiquitous green fluorescent protein (GFP) reporter line resulting in double transgenic tg(Nrl(-/-); aGFP) mice. In Nrl(-/-) retinas, all rods are converted into cone-like photoreceptors that express CD73 allowing their enrichment by CD73-based magnetic activated cell sorting prior transplantation into the subretinal space of adult wild-type, cone-only (Nrl(-/-)), or cone photoreceptor function loss 1 (Cpfl1) mice. Donor cells correctly integrated into host retinas, acquired mature photoreceptor morphology, expressed cone-specific markers, and survived for up to 6 months, with significantly increased integration rates in the cone-only Nrl(-/-) retina. Individual retinal ganglion cell recordings demonstrated the restoration of photopic responses in cone degeneration mice following transplantation suggesting, for the first time, the feasibility of daylight vision repair by cell replacement in the adult mammalian retina.


Assuntos
Transplante de Células/métodos , Visão de Cores , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/terapia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microeletrodos , Retina/citologia , Degeneração Retiniana/metabolismo
19.
Invest Ophthalmol Vis Sci ; 55(8): 5431-44, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25103259

RESUMO

PURPOSE: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement of RPE is discussed as a potential therapy for AMD. Previous studies were performed in animal models with severe limitations in recapitulating the disease progression. In detail, we describe the effect of systemic injection of sodium iodate in the mouse retina. We further evaluate the usefulness of this animal model to analyze cell-specific effects following transplantation of human embryonic stem cell (hESC)-derived RPE cells. METHODS: Morphologic, functional, and behavioral changes following sodium iodate injection were monitored by histology, gene expression analysis, electroretinography, and optokinetic head tracking. Human embryonic stem cell-derived RPE cells were transplanted 1 week after sodium iodate injection and experimental retinae were analyzed 3 weeks later. RESULTS: Injection of sodium iodate caused complete RPE cell loss, photoreceptor degeneration, and altered gene and protein expression in outer and inner nuclear layers. Retinal function was severely affected by day 3 and abolished from day 14. Following transplantation, donor hESC-derived RPE cells formed extensive monolayers that displayed wild-type RPE cell morphology, organization, and function, including phagocytosis of host photoreceptor outer segments. CONCLUSIONS: Systemic injection of sodium iodate has considerable effects on RPE, photoreceptors, and inner nuclear layer neurons, and provides a model to assay reconstitution and maturation of RPE cell transplants. The availability of an RPE-free Bruch's membrane in this model likely allows the unprecedented formation of extensive polarized cell monolayers from donor hESC-derived RPE cell suspensions.


Assuntos
Transplante de Células/métodos , Modelos Animais de Doenças , Doenças Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Iodatos/farmacologia , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos
20.
Curr Opin Cell Biol ; 31: 23-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25033469

RESUMO

Recently human embryonic stem cell research has taken on a new dimension - the third dimension. Capitalizing on increasing knowledge on directing pluripotent cells along different lineages, combined with ECM supported three-dimensional culture conditions, it has become possible to generate highly organized tissues of the central nervous system, gut, liver and kidney. Each system has been used to study different aspects of organogenesis and function including physical forces underlying optic cup morphogenesis, the function of disease related genes in progenitor cell control, as well as interaction of the generated tissues with host tissue upon transplantation. Pluripotent stem cell derived organoids represent powerful systems for the study of how cells self-organize to generate tissues with a given shape, pattern and form.


Assuntos
Técnicas de Cultura , Organogênese , Animais , Corpos Embrioides/metabolismo , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA