Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 215: 114558, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930998

RESUMO

Here, we show that it is possible to harvest photocurrent directly from unprocessed plant tissues from terrestrial or aquatic environments in bio-photoelectrochemical cells (BPECs) and use the current to produce molecular H2. The source of electrons is shown to originate from the Photosystem II water-oxidation reaction and utilizes exported mediating molecules, especially NADPH. The photocurrent production is dependent on the concentration of the photosynthetic complexes, as an increase in total chlorophyll and oxygen evolution rates in the leaves lead to increased photocurrent rates. The permeability of the outer leaf surface is another important factor in photocurrent harvesting. Different tissues produce photocurrent densities in the range of ∼1-10 mA/cm2 which is significantly higher than microorganism-based BPECs. The relatively high photocurrent and the simplicity of the plants BPEC may pave the way toward the development of future applicative photosynthetic based energy technologies.


Assuntos
Técnicas Biossensoriais , Hidrogênio , Clorofila , Transporte de Elétrons , Fotossíntese , Folhas de Planta , Plantas
2.
Clin Dysmorphol ; 30(2): 71-75, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925198

RESUMO

Feingold syndrome 1 (FGLDS1) is an autosomal dominant malformation syndrome, characterized by skeletal anomalies, microcephaly, facial dysmorphism, gastrointestinal atresias and learning disabilities. Mutations in the MYCN gene are known to be the cause of this syndrome. Congenital absence of the flexor pollicis longus (CAFPL) tendon is a rare hand anomaly. Most cases are sporadic and no genetic variants have been described associated with this abnormality. We describe here a pedigree combining familial CAFPL tendon as a feature of FGLDS1. Molecular analyses of whole exome sequence data in five affected family members spanning three generations of this family revealed a novel mutation in the MYCN gene (c.1171C>T; p.Arg391Cys). Variants in MYCN have not been published in association with isolated or syndromic CAFPL tendon, nor has this been described as a skeletal feature of Feingold syndrome. This report expands on the clinical and molecular spectrum of MYCN-related disorders and highlights the importance of MYCN protein in normal human thumb and foramen development.


Assuntos
Pálpebras/anormalidades , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Tendões/anormalidades , Polegar/anormalidades , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Adulto , Idoso , Criança , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Proteína Proto-Oncogênica N-Myc/química , Linhagem , Fenótipo , Relação Estrutura-Atividade , Sequenciamento do Exoma
3.
Biochim Biophys Acta Bioenerg ; 1861(4): 148047, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306623

RESUMO

Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.


Assuntos
Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Processos Fotoquímicos , Ficobilissomas/química
4.
N Engl J Med ; 380(9): 833-841, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30763140

RESUMO

BACKGROUND: Central centrifugal cicatricial alopecia (CCCA) is the most common form of scarring alopecia among women of African ancestry. The disease is occasionally observed to affect women in families in a manner that suggests an autosomal dominant trait and usually manifests clinically after intense hair grooming. We sought to determine whether there exists a genetic basis of CCCA and, if so, what it is. METHODS: We used exome sequencing in a group of women with alopecia (discovery set), compared the results with those in a public repository, and applied other filtering criteria to identify candidate genes. We then performed direct sequencing to identify disease-associated DNA variations and RNA sequencing, protein modeling, immunofluorescence staining, immunoblotting, and an enzymatic assay to evaluate the consequences of potential etiologic mutations. We used a replication set that consisted of women with CCCA to confirm the data obtained with the discovery set. RESULTS: In the discovery set, which included 16 patients, we identified one splice site and three heterozygous missense mutations in PADI3 in 5 patients (31%). (The approximate prevalence of the disease is up to 5.6%.) PADI3 encodes peptidyl arginine deiminase, type III (PADI3), an enzyme that post-translationally modifies other proteins that are essential to hair-shaft formation. All three CCCA-associated missense mutations in PADI3 affect highly conserved residues and are predicted to be pathogenic; protein modeling suggests that they result in protein misfolding. These mutations were found to result in reduced PADI3 expression, abnormal intracellular localization of the protein, and decreased enzymatic activity - findings that support their pathogenicity. Immunofluorescence staining showed decreased expression of PADI3 in biopsy samples of scalp skin obtained from patients with CCCA. We then directly sequenced PADI3 in an additional 42 patients (replication set) and observed genetic variants in 9 of them. A post hoc analysis of the combined data sets showed that the prevalence of PADI3 mutation was higher among patients with CCCA than in a control cohort of women of African ancestry (P = 0.002 by the chi-square test; P = 0.006 by Fisher's exact test; and after adjustment for relatedness of persons, P = 0.03 and P = 0.04, respectively). CONCLUSIONS: Mutations in PADI3, which encodes a protein that is essential to proper hair-shaft formation, were associated with CCCA. (Funded by the Ram Family Foundation and others.).


Assuntos
Alopecia/genética , Negro ou Afro-Americano/genética , Predisposição Genética para Doença , Cabelo/crescimento & desenvolvimento , Mutação , Desiminases de Arginina em Proteínas/genética , Adolescente , Adulto , Idade de Início , Alopecia/etnologia , Distribuição de Qui-Quadrado , Cicatriz/genética , Exoma , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , Mutagênese , Linhagem , Proteína-Arginina Desiminase do Tipo 3 , Desiminases de Arginina em Proteínas/metabolismo , Couro Cabeludo/patologia , Análise de Sequência de DNA
5.
Commun Biol ; 1: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272005

RESUMO

A recently reported family of soluble cyanobacterial carotenoproteins, homologs of the C-terminal domain (CTDH) of the photoprotective Orange Carotenoid Protein, is suggested to mediate carotenoid transfer from the thylakoid membrane to the Helical Carotenoid Proteins, which are paralogs of the N-terminal domain of the OCP. Here we present the three-dimensional structure of a carotenoid-free CTDH variant from Anabaena (Nostoc) PCC 7120. This CTDH contains a cysteine residue at position 103. Two dimer-forming interfaces were identified, one stabilized by a disulfide bond between monomers and the second between each monomer's ß-sheets, both compatible with small-angle X-ray scattering data and likely representing intermediates of carotenoid transfer processes. The crystal structure revealed a major positional change of the C-terminal tail. Further mutational analysis revealed the importance of the C-terminal tail in both carotenoid uptake and delivery. These results have allowed us to suggest a detailed model for carotenoid transfer via these soluble proteins.

6.
PLoS Genet ; 12(10): e1006369, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27736875

RESUMO

Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs), the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway.


Assuntos
Displasia Ectodérmica/genética , Morfogênese/genética , Proteínas/genética , Receptor Notch1/biossíntese , Animais , Diferenciação Celular/genética , Análise Mutacional de DNA , Displasia Ectodérmica/patologia , Mutação da Fase de Leitura/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Humanos , Camundongos , Linhagem , Receptor Notch1/genética , Transdução de Sinais/genética , Dente/crescimento & desenvolvimento , Dente/metabolismo
7.
Nucleic Acids Res ; 43(17): 8601-13, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26264664

RESUMO

Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)-the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and has yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We also evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3: , as a prospective therapeutic candidate for the treatment of VL.


Assuntos
Antiprotozoários/química , Leishmania/efeitos dos fármacos , Paromomicina/química , Inibidores da Síntese de Proteínas/química , Ribossomos/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Cobaias , Humanos , Leishmania/crescimento & desenvolvimento , Macrófagos/parasitologia , Masculino , Modelos Moleculares , Neomicina/análogos & derivados , Neomicina/química , Neomicina/toxicidade , Paromomicina/farmacologia , Paromomicina/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/toxicidade , RNA Ribossômico/química , Ribossomos/química
8.
PLoS One ; 10(4): e0122616, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915422

RESUMO

Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 µA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 µA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 µA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/fisiologia , Tilacoides/fisiologia , Eletrodos , Transporte de Elétrons/fisiologia , Elétrons , Luz , Luz Solar , Synechocystis/metabolismo , Tilacoides/metabolismo
9.
Photosynth Res ; 126(1): 161-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25588957

RESUMO

The conversion of solar energy (SEC) to storable chemical energy by photosynthesis has been performed by photosynthetic organisms, including oxygenic cyanobacteria for over 3 billion years. We have previously shown that crude thylakoid membranes from the cyanobacterium Synechocytis sp. PCC 6803 can reduce the electron transfer (ET) protein cytochrome c even in the presence of the PSII inhibitor DCMU. Mutation of lysine 238 of the Photosystem II D1 protein to glutamic acid increased the cytochrome reduction rates, indicating the possible position of this unknown ET pathway. In this contribution, we show that D1-K238E is rather unique, as other mutations to K238, or to other residues in the same vicinity, are not as successful in cytochrome c reduction. This observation indicates the sensitivity of ET reactions to minor changes. As the next step in obtaining useful SEC from biological material, we describe the use of crude Synechocystis membranes in a bio-photovoltaic cell containing an N-acetyl cysteine-modified gold electrode. We show the production of significant current for prolonged time durations, in the presence of DCMU. Surprisingly, the presence of cytochrome c was not found to be necessary for ET to the bio-voltaic cell.


Assuntos
Fontes de Energia Bioelétrica , Mutação , Complexo de Proteína do Fotossistema II/genética , Synechocystis/metabolismo , Tilacoides/metabolismo , Acetilcisteína/química , Citocromos c/metabolismo , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/metabolismo , Oxirredução , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética
10.
Eukaryot Cell ; 13(4): 494-503, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562908

RESUMO

Nitric oxide (NO) has antimicrobial properties against many pathogens due to its reactivity as an S-nitrosylating agent. It inhibits many of the key enzymes that are involved in the metabolism and virulence of the parasite Entamoeba histolytica through S-nitrosylation of essential cysteine residues. Very little information is available on the mechanism of resistance to NO by pathogens in general and by this parasite in particular. Here, we report that exposure of the parasites to S-nitrosoglutathione (GSNO), an NO donor molecule, strongly reduces their viability and protein synthesis. However, the deleterious effects of NO were significantly reduced in trophozoites overexpressing Ehmeth, the cytosine-5 methyltransferase of the Dnmt2 family. Since these trophozoites also exhibited high levels of tRNA(Asp) methylation, the high levels suggested that Ehmeth-mediated tRNA(Asp) methylation is part of the resistance mechanism to NO. We previously reported that enolase, another glycolytic enzyme, binds to Ehmeth and inhibits its activity. We observed that the amount of Ehmeth-enolase complex was significantly reduced in GSNO-treated E. histolytica, which explains the aforementioned increase of tRNA methylation. Specifically, we demonstrated via site-directed mutagenesis that cysteine residues 228 and 229 of Ehmeth are susceptible to S-nitrosylation and are crucial for Ehmeth binding to enolase and for Ehmeth-mediated resistance to NO. These results indicate that Ehmeth has a central role in the response of the parasite to NO, and they contribute to the growing evidence that NO is a regulator of epigenetic mechanisms.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Resistência a Medicamentos/genética , Entamoeba histolytica/genética , Doadores de Óxido Nítrico/farmacologia , Proteínas de Protozoários/genética , S-Nitrosoglutationa/farmacologia , Cisteína/química , Cisteína/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/metabolismo , Epigênese Genética , Metilação , Mutagênese Sítio-Dirigida , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , S-Nitrosoglutationa/metabolismo , Transdução de Sinais , Estresse Fisiológico , Trofozoítos/efeitos dos fármacos , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo
12.
Am J Hum Genet ; 93(4): 752-7, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24075184

RESUMO

The coexistence of abnormal keratinization and aberrant pigmentation in a number of cornification disorders has long suggested a mechanistic link between these two processes. Here, we deciphered the genetic basis of Cole disease, a rare autosomal-dominant genodermatosis featuring punctate keratoderma, patchy hypopigmentation, and uncommonly, cutaneous calcifications. Using a combination of exome and direct sequencing, we showed complete cosegregation of the disease phenotype with three heterozygous ENPP1 mutations in three unrelated families. All mutations were found to affect cysteine residues in the somatomedin-B-like 2 (SMB2) domain in the encoded protein, which has been implicated in insulin signaling. ENPP1 encodes ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which is responsible for the generation of inorganic pyrophosphate, a natural inhibitor of mineralization. Previously, biallelic mutations in ENPP1 were shown to underlie a number of recessive conditions characterized by ectopic calcification, thus providing evidence of profound phenotypic heterogeneity in ENPP1-associated genetic diseases.


Assuntos
Calcificação Fisiológica/genética , Hipopigmentação/genética , Ceratose/genética , Mutação , Diester Fosfórico Hidrolases/genética , Poroceratose/genética , Pirofosfatases/genética , Dermatopatias/genética , Exoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Transdução de Sinais/genética , Dermatopatias Genéticas/genética , Somatomedinas/genética
13.
Biochim Biophys Acta ; 1834(3): 629-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23305929

RESUMO

Tyrosinase is a type 3 copper enzyme with great potential for production of commercially valuable diphenols from monophenols. However, the use of tyrosinase is limited by its further oxidation of diphenols to quinones. We recently determined the structure of the Bacillus megaterium tyrosinase revealing a residue, V218, which we proposed to take part in positioning of substrates within the active site. In the structure of catechol oxidase from Ipomoea batatas, the lack of monophenolase activity was attributed to the presence of F261 near CuA. Consequently, we engineered two variants, V218F and V218G. V218F was expected to have a decreased monophenolase activity, due to the bulky residue extending into the active site. Surprisingly, both V218F and V218G exhibited a 9- and 4.4-fold higher monophenolase/diphenolase activity ratio, respectively. X-ray structures of variant V218F display a flexibility of the phenylalanine residue along with an adjacent histidine, which we propose to be the source of the change in activity ratio.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Catecol Oxidase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Substituição de Aminoácidos , Bacillus megaterium/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico/genética , Catecol Oxidase/química , Catecol Oxidase/genética , Cobre/química , Cobre/metabolismo , Cristalografia por Raios X , Ipomoea batatas/enzimologia , Ipomoea batatas/genética , Cinética , Levodopa/química , Levodopa/metabolismo , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/genética , Mutação , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo , Valina/química , Valina/genética , Valina/metabolismo
14.
J Invest Dermatol ; 128(6): 1423-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18094730

RESUMO

Normophosphatemic familial tumoral calcinosis (NFTC) is an autosomal recessive disorder characterized by calcium deposition in skin and mucosae and associated with unremitting pain and life-threatening skin infections. A homozygous missense mutation (p.K1495E), resulting in SAMD9 protein degradation, was recently shown to cause NFTC in five families of Jewish-Yemenite origin. In this study, we evaluated another Jewish-Yemenite NFTC kindred. All patients were compound heterozygous for two mutations in SAMD9: K1495E and a previously unreported nonsense mutation, R344X, predicted to result in a markedly truncated molecule. Screening of unaffected population-matched controls revealed heterozygosity for K1495E and R344X only in individuals of Jewish-Yemenite ancestry, but not in more than 700 control samples of other origins, including 93 non-Jewish Yemenite. These data may be suggestive of positive selection, considering the rarity of NFTC and the small size of the Jewish-Yemenite population; alternatively, they may reflect genetic drift or the effect of a population-specific modifier trait. Calcifications in NFTC generally develop over areas subjected to repeated trauma and are associated with marked inflammatory manifestations, indicating that SAMD9 may play a role in the inflammatory response to tissue injury. We therefore assessed the effect of cellular stress and tumor necrosis factor-alpha (TNF-alpha), a potent pro-inflammatory cytokine, on SAMD9 gene expression. Whereas exogenous hydrogen peroxide and heat shock did not affect SAMD9 transcription, osmotic shock was found to markedly upregulate SAMD9 expression. In addition, incubation of endothelial cells with TNF-alpha caused a dose-related, p38-dependant increase in SAMD9 expression. These data link NFTC and SAMD9 to the TNF-alpha signaling pathway, suggesting a role for this system in the regulation of extra-osseous calcification.


Assuntos
Calcinose/genética , Regulação da Expressão Gênica , Mutação , Proteínas/genética , Fator de Necrose Tumoral alfa/genética , Calcinose/etnologia , Linhagem Celular Transformada , Células Cultivadas , Análise Mutacional de DNA , Haplótipos , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Judeus , Repetições de Microssatélites , Transdução de Sinais , Veias Umbilicais/citologia
15.
J Mol Biol ; 348(4): 961-9, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15843026

RESUMO

The MntC protein is the periplasmic solute-binding protein component of the high-affinity manganese ATP-binding cassette-type transport system in the cyanobacterium Synechocytis PCC sp. 6803. We have determined the structure of recombinant MntC at 2.9 A resolution by X-ray crystallography using a combination of multi-wavelength anomalous diffraction and molecular replacement. The presence of Mn2+ in the metal ion-binding site was ascertained by use of anomalous difference electron density maps using diffraction data collected at the Mn absorption edge. The MntC protein is similar to previously determined metal ion-binding, solute-binding proteins with two globular domains connected by an extended alpha-helix. However, the metal ion-binding site is asymmetric, with two of the four ligating residues (Glu220 and Asp295) situated closer to the ion than the two histidine residues (His89 and His154). A unique characteristic of the MntC is the existence of a disulfide bond between Cys219 and Cys268. Analysis of amino acid sequences of homologous proteins shows that conservation of the cysteine residues forming the disulfide bond occurs only in cyanobacterial manganese solute-binding proteins. One of the monomers in the MntC asymmetric unit trimer is disordered significantly in the globular domain containing the disulfide bond. The electron density on the manganese ion and on the disulfide bond in this monomer indicates that reduction of this bond changes the relative position of the lower domain and of the Glu220 ligand, potentially lowering the affinity towards Mn2+. This is confirmed by reduction of the disulfide bond in vitro, showing the release of bound Mn2+. We propose that the reduction or oxidation state of the disulfide bond can alter the binding affinity of the protein towards Mn2+ and thus determine whether these ions will be transported into the cytoplasm, or be available for photosystem II biogenesis in the periplasm.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cianobactérias/química , Cianobactérias/metabolismo , Manganês/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes/metabolismo , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Estrutura Quaternária de Proteína , Alinhamento de Sequência
16.
J Biol Chem ; 279(43): 45110-20, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15308670

RESUMO

The enzyme 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase is metal-dependent in one class of organisms and metal-independent in another. We have used a rapid transient kinetic approach combined with site-directed mutagenesis to characterize the role of the metal ion as well as to explore the catalytic mechanisms of the two classes of enzymes. In the metal-dependent Aquifex pyrophilus KDO8P synthase, Cys11 was replaced by Asn (ApC11N), and in the metal-independent Escherichia coli KDO8P synthase a reciprocal mutation, Asn26 to Cys, was prepared (EcN26C). The ApC11N mutant retained about 10% of the wild-type maximal activity in the absence of metal ions. Addition of divalent metal ions did not affect the catalytic activity of the mutant enzyme and its catalytic efficiency (kcat/Km) was reduced by only approximately 12-fold, implying that the ApC11N KDO8P synthase mutant has become a bone fide metal-independent enzyme. The isolated EcN26C mutant had similar metal content and spectral properties as the metal-dependent wild-type A. pyrophilus KDO8P synthase. EDTA-treated EcN26C retained about 6% of the wild-type activity, and the addition of Mn2+ or Cd2+ stimulated its activity to approximately 30% of the wild-type maximal activity. This suggests that EcN26C KDO8P synthase mutant has properties similar to that of metal-dependent KDO8P synthases. The combined data indicate that the metal ion is not directly involved in the chemistry of the KDO8P synthase catalyzed reaction, but has an important structural role in metal-dependent enzymes in maintaining the correct orientation of the substrates and/or reaction intermediate(s) in the enzyme active site.


Assuntos
Aldeído Liases/biossíntese , Bactérias/enzimologia , Escherichia coli/enzimologia , Mutação , Sítios de Ligação , Cádmio/química , Cádmio/farmacologia , Catálise , Quelantes/farmacologia , Clonagem Molecular , Cisteína/química , Relação Dose-Resposta a Droga , Ácido Edético/farmacologia , Escherichia coli/metabolismo , Íons , Cinética , Magnésio/química , Magnésio/farmacologia , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Espectrofotometria , Fatores de Tempo
17.
J Mol Biol ; 327(1): 19-30, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12614605

RESUMO

Retroviral reverse transcriptases (RTs) have both DNA polymerase and ribonuclease H (RNase H) activities. The RT of human immunodeficiency virus type-1 (HIV-1) is composed of two subunits. The p51, which is the smaller subunit, shares with the larger p66 subunit the same amino-terminal part (which encompasses the DNA polymerase domain) and lacks the carboxyl-terminal segment of the p66 (which is the RNase H domain). The structure of the polymerase domain of HIV-1 RT resembles a right hand (with fingers, palm and thumb subdomains) linked to the RNase H domain. Chemical modifications by thiol-specific reagents of cysteine 280, located in alpha helix I in the thumb subdomain of the polymerase domain, affect substantially only the RNase H activity. Also, the substitution of a serine for C280 did not alter any of the RT activities. Here we have systematically modified the C280 residue to either of the following residues: W, P, H, L, M, Y, Q, E or R. Only the first two mutations lead to a marked reduction in the RNase H activity, whereas none of the mutations affected the polymerase function to a significant extent. As expected, due to their impaired RNase H, the C280W and C280P mutants also had a very low DNA strand-transfer activity. It is also apparent from subunit-directed mutagenesis that each of the RT subunits contributes to the level of RNase H activity, yet the contribution of the p51 subunit to this activity is somewhat higher than that of the p66. Steady-state kinetic analyses have indicated that the RNase H activity was reduced mainly due to the sharp increase in the K(m) rather than changes in the k(cat) values. This suggests that the modifications of C280 lead to an impaired affinity of HIV-1 RT towards the RNA-DNA substrate.


Assuntos
Cisteína/metabolismo , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Mutagênese Sítio-Dirigida/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Catálise , Cisteína/genética , DNA Polimerase Dirigida por DNA/metabolismo , Transcriptase Reversa do HIV/química , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease H/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA