Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 35155-35165, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920304

RESUMO

The catalytic efficiency of enzymes can be harnessed as an environmentally friendly solution for decontaminating various xenobiotics and toxins. However, for some xenobiotics, several enzymatic steps are needed to obtain nontoxic products. Another challenge is the low durability and stability of many native enzymes in their purified form. Herein, we coupled peptide-based encapsulation of bacterial phosphotriesterase with soil-originated bacteria, Arthrobacter sp. 4Hß as an efficient system capable of biodegradation of paraoxon, a neurotoxin pesticide. Specifically, recombinantly expressed and purified methyl parathion hydrolase (MPH), with high hydrolytic activity toward paraoxon, was encapsulated within peptide nanofibrils, resulting in increased shelf life and retaining ∼50% activity after 132 days since purification. Next, the addition of Arthrobacter sp. 4Hß, capable of degrading para-nitrophenol (PNP), the hydrolysis product of paraoxon, which is still toxic, resulted in nondetectable levels of PNP. These results present an efficient one-pot system that can be further developed as an environmentally friendly solution, coupling purified enzymes and native bacteria, for pesticide bioremediation. We further suggest that this system can be tailored for different xenobiotics by encapsulating the rate-limiting key enzymes followed by their combination with environmental bacteria that can use the enzymatic step products for full degradation without the need to engineer synthetic bacteria.


Assuntos
Biodegradação Ambiental , Paraoxon , Hidrolases de Triester Fosfórico , Paraoxon/metabolismo , Paraoxon/química , Hidrolases de Triester Fosfórico/metabolismo , Hidrolases de Triester Fosfórico/química , Arthrobacter/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Nitrofenóis/metabolismo , Nitrofenóis/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , Praguicidas/metabolismo , Praguicidas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação
2.
Adv Healthc Mater ; 13(20): e2303632, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38536070

RESUMO

Wearable pressure sensors have become increasingly popular for personal healthcare and motion detection applications due to recent advances in materials science and functional nanomaterials. In this study, a novel composite hydrogel is presented as a sensitive piezoresistive sensor that can be utilized for various biomedical applications, such as wearable skin patches and integrated artificial skin that can measure pulse and blood pressure, as well as monitor sound as a self-powered microphone. The hydrogel is composed of self-assembled short peptides containing aromatic, positively- or negatively charged amino acids combined with 2D Ti3C2Tz MXene nanosheets. This material is low-cost, facile, reliable, and scalable for large areas while maintaining high sensitivity, a wide detection range, durability, oxidation stability, and biocompatibility. The bioinspired nanostructure, strong mechanical stability, and ease of functionalization make the assembled peptide-based composite MXene-hydrogel a promising and widely applicable material for use in bio-related wearable electronics.


Assuntos
Hidrogéis , Peptídeos , Dispositivos Eletrônicos Vestíveis , Peptídeos/química , Hidrogéis/química , Humanos , Condutividade Elétrica , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
3.
J Colloid Interface Sci ; 636: 113-133, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623365

RESUMO

9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.


Assuntos
Dipeptídeos , Peptídeos , Dipeptídeos/química , Peptídeos/química , Hidrogéis/química , Fenilalanina/química
4.
ACS Appl Mater Interfaces ; 14(50): 55392-55401, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475602

RESUMO

Defrost sensors are a crucial element for proper functioning of the pharmaceutical cold chain. In this paper, the self-assembled peptide-based hydrogels were used to construct a sensitive defrost sensor for the transportation and storage of medications and biomaterials. The turbidity of the peptide hydrogel was employed as a marker of the temperature regime. The gelation kinetics under different conditions was studied to detect various stages of hydrogel structural transitions aimed at tuning the system properties. The developed sensor can be stored at room temperature for a long period, irreversibly indicates whether the product has been thawed, and can be adjusted to a specific temperature range and detection time.


Assuntos
Hidrogéis , Refrigeração , Hidrogéis/química , Materiais Biocompatíveis , Peptídeos/química , Temperatura
5.
Cells ; 11(24)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552900

RESUMO

Peptide-based hydrogels were shown to serve as good matrices for 3D cell culture and to be applied in the field of regenerative medicine. The study of the cell-matrix interaction is important for the understanding of cell attachment, proliferation, and migration, as well as for the improvement of the matrix. Here, we used scanning ion conductance microscopy (SICM) to study the growth of cells on self-assembled peptide-based hydrogels. The hydrogel surface topography, which changes during its formation in an aqueous solution, were studied at nanoscale resolution and compared with fluorescence lifetime imaging microscopy (FLIM). Moreover, SICM demonstrated the ability to map living cells inside the hydrogel. A zwitterionic label-free pH nanoprobe with a sensitivity > 0.01 units was applied for the investigation of pH mapping in the hydrogel to estimate the hydrogel applicability for cell growth. The SICM technique that was applied here to evaluate the cell growth on the peptide-based hydrogel can be used as a tool to study functional living cells.


Assuntos
Hidrogéis , Peptídeos , Microscopia de Fluorescência , Íons , Citosol
6.
ACS Appl Mater Interfaces ; 14(41): 46827-46840, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206330

RESUMO

The potential of ultra-short peptides to self-assemble into well-ordered functional nanostructures makes them promising minimal components for mimicking the basic ingredient of nature and diverse biomaterials. However, selection and modular design of perfect de novo sequences are extremely tricky due to their vast possible combinatorial space. Moreover, a single amino acid substitution can drastically alter the supramolecular packing structure of short peptide assemblies. Here, we report the design of rigid hybrid hydrogels produced by sequence engineering of a new series of ultra-short collagen-mimicking tripeptides. Connecting glycine with different combinations of proline and its post-translational product 4-hydroxyproline, the single triplet motif, displays the natural collagen-helix-like structure. Improved mechanical rigidity is obtained via co-assembly with the non-collagenous hydrogelator, fluorenylmethoxycarbonyl (Fmoc) diphenylalanine. Characterizations of the supramolecular interactions that promote the self-supporting and self-healing properties of the co-assemblies are performed by physicochemical experiments and atomistic models. Our results clearly demonstrate the significance of sequence engineering to design functional peptide motifs with desired physicochemical and electromechanical properties and reveal co-assembly as a promising strategy for the utilization of small, readily accessible biomimetic building blocks to generate hybrid biomolecular assemblies with structural heterogeneity and functionality of natural materials.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Hidroxiprolina , Peptídeos/química , Materiais Biocompatíveis/química , Colágeno , Glicina
7.
Nanoscale ; 14(23): 8525-8533, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35660804

RESUMO

Over the last decade, three-dimensional (3D) printing technologies have attracted the interest of researchers due to the possibility of fabricating tissue- and organ-like structures with similarities to the organ of interest. One of the most widely used materials for the fabrication of bioinks is gelatin (Gel) due to its excellent biocompatibility properties. However, in order to fabricate stable scaffolds under physiological conditions, the most common approach is to use gelatin methacrylate (GelMA) that allows the crosslinking and therefore the stabilization of the hydrogel through UV crosslinking. The crosslinking process can be harmful to cells thus decreasing total cell viability. To overcome the need for post-printing crosslinking, a new approach of bioink formulation was studied, incorporating the Fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) peptide into the Gel bioink. However, although Fmoc-FF possesses excellent mechanical properties, the lack of elasticity and viscosity makes it unsuitable for 3D-printing. Here, we demonstrate that covalent conjugation of two different ethylene glycol (EG) motifs to the Fmoc-FF peptide increases the hydrophilicity and elasticity properties, which are essential for 3D-printing. This new approach for bioink formulation avoids the need for any post-printing manufacturing processes, such as chemical or UV crosslinking.


Assuntos
Etilenoglicol , Gelatina , Dipeptídeos , Etilenos , Fluorenos , Hidrogéis/química , Peptídeos , Fenilalanina , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Chem Commun (Camb) ; 58(44): 6445-6448, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35548938

RESUMO

The occurrence of sequential multiple aromatic residues in a helical sequence is rare compared to the ß-sheet rich structure. Here, using helix promoting α-aminoisobutyric acid (Aib) residues, we unravel atomistic details of the helical secondary structure formation and the super helical assembly of two heptapeptides composed of sequential five and six phenylalanine (Phe) residues.


Assuntos
Oligopeptídeos , Peptídeos , Oligopeptídeos/química , Peptídeos/química , Fenilalanina/química , Conformação Proteica
9.
ACS Appl Mater Interfaces ; 14(1): 464-473, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941264

RESUMO

Molecular self-assembly is a spontaneous natural process resulting in highly ordered nano to microarchitectures. We report temperature-independent formation of robust stable membranes obtained by the spontaneous interaction of intrinsically disordered elastin-like polypeptides (ELPs) with short aromatic peptides at temperatures both below and above the conformational transition temperature of the ELPs. The membranes are stable over time and display durability over a wide range of parameters including temperature, pH, and ultrasound energy. The morphology and composition of the membranes were analyzed using microscopy. These robust structures support preosteoblast cell adhesion and proliferation as well as pH-dependent cargo release. Simple noncovalent interactions with short aromatic peptides can overcome conformational restrictions due to the phase transition to facilitate the formation of complex bioactive scaffolds that are stable over a wide range of environmental parameters. This approach offers novel possibilities for controlling the conformational restriction of intrinsically disordered proteins and using them in the design of new materials.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , Conformação Proteica , Estabilidade Proteica
10.
Pharmaceutics ; 13(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34683894

RESUMO

Hydrogel scaffolds have attracted much interest in the last few years for applications in the field of bone and cartilage tissue engineering. These scaffolds serve as a convenient three-dimensional structure on which cells can grow while sensing the native environment. Natural polymer-based hydrogels are an interesting choice for such purposes, but they lack the required mechanical properties. In contrast, composite hydrogels formed by biopolymers and short peptide hydrogelators possess mechanical characteristics suitable for osteogenesis. Here, we describe how combining the short peptide hydrogelator, Pyrene-Lysine-Cysteine (PyKC), with other biopolymers, can produce materials that are suitable for tissue engineering purposes. The presence of PyKC considerably enhances the strength and water content of the composite hydrogels, and confers thixotropic behavior. The hyaluronic acid-PyKC composite hydrogels were shown to be biocompatible, with the ability to support osteogenesis, since MC3 T3-E1 osteoblast progenitor cells grown on the materials displayed matrix calcification and osteogenic differentiation. The osteogenesis results and the injectability of these composite hydrogels hold promise for their future utilization in tissue engineering.

11.
Macromol Biosci ; 21(8): e2100090, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142442

RESUMO

The engineering of biological molecules is the fundamental concept behind the design of complex materials with desirable functions. Over the last few decades, peptides and proteins have emerged as useful building blocks for well-defined nanostructures with controlled size and dimensions. Short peptides in particular have received much attention due to their inherent biocompatibility, lower synthetic cost, and ease of tunability. In addition to the diverse self-assembling properties of short peptides comprising coded amino acids and their emerging applications in nanotechnology, there is now growing interest in the properties of peptides composed of non-canonical amino acids. Such non-natural oligomers have been shown in recent years to form well-defined secondary structures similar to natural proteins, with the ability to self-assemble to generate a wide variety of nanostructures with excellent biostability. This review describes recent events in the development of supramolecular assemblies of peptides composed completely of non-coded amino acids and their hybrid analogues. Special attention is paid to understanding the supramolecular assemblies at the atomic level and to considering their potential applications in nanotechnology.


Assuntos
Aminoácidos , Nanoestruturas , Aminoácidos/química , Nanoestruturas/química , Nanotecnologia , Peptídeos/química , Estrutura Secundária de Proteína
12.
ACS Nano ; 15(4): 6530-6539, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844499

RESUMO

Molecular oxygen (O2) is a highly reactive oxidizing agent and is harmful to many biological and industrial systems. Although O2 often interacts via metals or reducing agents, a binding mechanism involving an organic supramolecular structure has not been described to date. In this work, the prominent dipeptide hydrogelator fluorenylmethyloxycarbonyl-diphenylalanine is shown to encage O2 and significantly limit its diffusion and penetration through the hydrogel. Molecular dynamics simulations suggested that the O2 binding mechanism is governed by pockets formed between the aromatic rings in the supramolecular structure of the gel, which bind O2 through hydrophobic interactions. This phenomenon is harnessed to maintain the activity of the O2-hypersensitive enzyme [FeFe]-hydrogenase, which holds promising potential for utilizing hydrogen gas for sustainable energy applications. Hydrogenase encapsulation within the gel allows hydrogen production following exposure to ambient O2. This phenomenon may lead to utilization of this low molecular weight gelator in a wide range of O2-sensitive applications.


Assuntos
Hidrogenase , Oxigênio , Hidrogéis , Hidrogênio , Peptídeos
13.
ACS Appl Mater Interfaces ; 13(2): 2179-2188, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405501

RESUMO

The need to increase agricultural yield has led to an extensive use of antibiotics against plant pathogens, which has resulted in the emergence of resistant strains. Therefore, there is an increasing demand for new methods, preferably with lower chances of developing resistant strains and a lower risk to the environment or public health. Many Gram-negative bacterial pathogens use quorum sensing, a population-density-dependent regulatory mechanism, to monitor the secretion of N-acyl-homoserine lactones (AHLs) and pathogenicity. Therefore, quorum sensing represents an attractive antivirulence target. AHL lactonases hydrolyze AHLs and have potential antibacterial properties; however, their use is limited by thermal instability and durability, or low activity. Here, we demonstrate that an AHL lactonase from the phosphotriesterase-like lactonase family exhibits high activity with the AHL secreted from the plant pathogen Erwinia amylovora and attenuates infection in planta. Using directed enzyme evolution, we were able to increase the enzyme's temperature resistance (T50, the temperature at which 50% of the activity is retained) by 8 °C. Then, by performing enzyme encapsulation in nanospherical capsules composed of tertbutoxycarbonyl-Phe-Phe-OH peptide, the shelf life was extended for more than 5 weeks. Furthermore, the encapsulated and free mutant were able to significantly inhibit up to 70% blossom's infection in the field, achieving the same efficacy as seen with antibiotics commonly used today to treat the plant pathogen. We conclude that specific AHL lactonase can inhibit E. amylovora infection in the field, as it degrades the AHL secreted by this plant pathogen. The combination of directed enzyme evolution and peptide nanostructure encapsulation significantly improved the thermal resistance and shelf life of the enzyme, respectively, increasing its potential in future development as antibacterial treatment.


Assuntos
Hidrolases de Éster Carboxílico/farmacologia , Erwinia amylovora/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Nanosferas/química , Doenças das Plantas/prevenção & controle , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Hidrolases de Éster Carboxílico/administração & dosagem , Hidrolases de Éster Carboxílico/genética , Evolução Molecular Direcionada/métodos , Enzimas Imobilizadas/administração & dosagem , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/farmacologia , Erwinia amylovora/fisiologia , Modelos Moleculares , Peptídeos/química , Doenças das Plantas/microbiologia , Pyrus/microbiologia
14.
ACS Nano ; 14(8): 9990-10000, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806033

RESUMO

Collagen, the most abundant protein in mammals, possesses notable cohesion and elasticity properties and efficiently induces tissue regeneration. The Gly-Pro-Hyp canonical tripeptide repeating unit of the collagen superhelix has been well-characterized. However, to date, the shortest tripeptide repeat demonstrated to attain a helical conformation contained 3-10 peptide repeats. Here, taking a minimalistic approach, we studied a single repeating unit of collagen in its protected form, Fmoc-Gly-Pro-Hyp. The peptide formed single crystals displaying left-handed polyproline II superhelical packing, as in the native collagen single strand. The crystalline assemblies also display head-to-tail H-bond interactions and an "aromatic zipper" arrangement at the molecular interface. The coassembly of this tripeptide, with Fmoc-Phe-Phe, a well-studied dipeptide hydrogelator, produced twisted helical fibrils with a polyproline II conformation and improved hydrogel mechanical rigidity. The design of these peptides illustrates the possibility to assemble superhelical nanostructures from minimal collagen-inspired peptides with their potential use as functional motifs to introduce a polyproline II conformation into hybrid hydrogel assemblies.


Assuntos
Hidrogéis , Peptídeos , Sequência de Aminoácidos , Animais , Colágeno , Conformação Proteica
15.
Soft Matter ; 16(33): 7860-7868, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32761042

RESUMO

The well-studied dipeptide fluorenylmethyloxycarbonyl-di-phenylalanine (FmocFF) forms a rigid hydrogel upon dissolving in dimethylsulfoxide (DMSO) and dilution in H2O. Here, we explored the pre-aggregation of the peptide in pure DMSO by vibrational spectroscopies, X-ray powder diffraction and dynamic light scattering. Our results show an equilibrium between a dominant population of amorphous oligomers (on a length scale of 2 nm) and a small number of protofibrils/fibrils (on a length scale of 30 nm in the centimolar and of 200 nm in the sub-molar region). To probe the mechanism underlying the formation of these protofilaments, we measured the 1H-NMR, IR and visible Raman spectra of DMSO containing different FmocFF concentrations, ranging between 10 and 300 mM. Our data reveal that interpeptide hydrogen bonding leads to the self-assembly of FmocFF in the centimolar region, while π-π stacking between Fmoc-groups is observed above 100 mM. The high 3J(HNHCα) coupling constant of the N-terminal amide proton indicates that the Fmoc end-cap of the peptide locks the N-terminal residue into a conformational ensemble centered at a φ-value of ca. -120°, which corresponds to a parallel ß-sheet type conformation. The 3J(HNHCα) coupling constant of the C-terminal residue is indicative of a polyproline II (pPII)/ßt mixture. Our results suggest that the gelation of FmocFF caused by the addition of a small amount of water to DMSO mixtures is facilitated by the formation of disordered protofibrils in pure DMSO.


Assuntos
Dimetil Sulfóxido , Peptídeos , Ligação de Hidrogênio , Conformação Proteica , Difração de Raios X
16.
Soft Matter ; 16(30): 7006-7017, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32638818

RESUMO

Over the last few years, hydrogels have been proposed for many biomedical applications, including drug delivery systems and scaffolds for tissue engineering. In particular, peptides have been envisioned as excellent candidates for the development of hydrogel materials, due to their intrinsic biocompatibility, ease of handling, and intrinsic biodegradability. Recently, we developed a novel hybrid polymer-peptide conjugate, PEG8-(FY)3, which is able to self-assemble into a self-supporting soft hydrogel over dry and wet surfaces as demonstrated by molecular dynamics simulation. Here, we describe the synthesis and supramolecular organization of six novel hexapeptides rationally designed by punctual chemical modification of the primary peptide sequence of the ancestor peptide (FY)3. Non-coded amino acids were incorporated by replacing the phenylalanine residue with naphthylalanine (Nal) and tyrosine with dopamine (Dopa). We also studied the effect of the modification of the side chain and the corresponding PEGylated peptide analogues, on the structural and mechanical properties of the hydrogel. Secondary structure, morphology and rheological properties of all the peptide-based materials were assessed by various biophysical tools. The in vitro biocompatibility of the supramolecular nanostructures was also evaluated on fibroblast cell lines. We conclude that the PEG8-(Nal-Dopa)3 hydrogel possesses the right properties to serve as a scaffold and support cell growth.


Assuntos
Hidrogéis , Nanoestruturas , Peptídeos , Estrutura Secundária de Proteína , Engenharia Tecidual
17.
J Am Chem Soc ; 141(1): 363-369, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532955

RESUMO

The ensemble of native, folded state was once considered to represent the global energy minimum of a given protein sequence. More recently, the discovery of the cross-ß amyloid state revealed that deeper energy minima exist, often associated with pathogenic, fibrillar deposits, when the concentration of proteins reaches a critical value. Fortunately, a sizable energy barrier impedes the conversion from native to pathogenic states. However, little is known about the structure of the related transition state. In addition, there are indications of polymorphism in the amyloidogenic process. Here, we report the first evidence of the conversion of metastable cross-α-helical crystals to thermodynamically stable cross-ß-sheet-like fibrils by a de novo designed heptapeptide. Furthermore, for the first time, we demonstrate at atomic resolution that the flip of a peptide plane from a type I to a type II' turn facilitates transformation to cross-ß structure and assembly of a dry steric zipper. This study establishes the potential of a peptide turn, a common protein secondary structure, to serve as a principal gatekeeper between a native metastable folded state and the amyloid state.


Assuntos
Amiloide/química , Agregados Proteicos , Cinética , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
18.
Macromol Rapid Commun ; 39(24): e1800588, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276909

RESUMO

Low-molecular-weight self-assembled peptides may serve as promising hydrogelators for drug delivery applications by changing their structural network in response to external stimuli. Herein, inspired by the well-studied low-molecular-weight peptide hydrogelator, fluorenyl-methoxycarbonyl-diphenylalanine (Fmoc-FF), a novel peptide is designed and synthesized to include an ultraviolet (UV)-sensitive phototrigger. Similar to Fmoc-FF, 6-nitroveratryloxycarbonyl-diphenylalanine (Nvoc-FF) self-assembles to form a 3D, self-supporting, nanofibrous hydrogel. The Nvoc-FF hydrogel exhibits good mechanical properties with a storage modulus of 40 kPa. UV irradiation of the Nvoc-FF hydrogel encapsulating insulin-fluorescein isothiocyanate (insulin-FITC) results in the cleavage of Nvoc-FF peptide to produce unmasked FF, thereby facilitating the degradation of the hydrogel and the release of insulin-FITC. This release is in linear correlation to the irradiation time. In the present study, a first insight into this rigid, fibrous, light-responsive hydrogel is provided, allowing the fabrication of a novel drug delivery system for controlled release of large molecules.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Peptídeos/química , Raios Ultravioleta , Fluoresceína-5-Isotiocianato/química , Insulina/química , Isotiocianatos/química
19.
ACS Appl Mater Interfaces ; 10(49): 41883-41891, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30211538

RESUMO

Hyaluronic acid (HA), a major component of the extracellular matrix, is an attractive material for various medical applications. Yet, its low mechanical rigidity and fast in vivo degradation hinder its utilization. Here, we demonstrate the reinforcement of HA by its integration with a low-molecular-weight peptide hydrogelator to produce a composite hydrogel. The formulation of HA with the fluorenylmethoxycarbonyl diphenylalanine (FmocFF) peptide, one of the most studied self-assembling hydrogel-forming building blocks, showing notable mechanical properties, resulted in the formation of stable, homogeneous hydrogels. Electron microscopy analysis demonstrated a uniform distribution of the two matrices in the composite forms. The composite hydrogels showed improved mechanical properties and stability to enzymatic degradation while maintaining their biocompatibility. Moreover, the storage modulus of the FmocFF/HA composite hydrogels reached up to 25 kPa. The composite hydrogels allowed sustained release of curcumin, a hydrophobic polyphenol showing antioxidant, anti-inflammatory, and antitumor activities. Importantly, the rate of curcumin release was modulated as a function of the concentration of the FmocFF peptide within the hydrogel matrix. This work provides a new approach for conferring mechanical rigidity and stability to HA without the need of cross-linking, thus potentially facilitating its utilization in different clinical applications, such as sustained drug release.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/química , Ácido Hialurônico/química , Hidrogéis/química , Peptídeos/química , Materiais Biocompatíveis/síntese química , Peptídeos/síntese química
20.
ACS Appl Mater Interfaces ; 10(33): 27578-27583, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30080033

RESUMO

The release of nanoscale structures from microcapsules, triggered by changes in the capsule in response to external stimuli, has significant potential for active component delivery. Here, we describe an orthogonal strategy for controlling molecular species' release across oil/water interfaces by modulating their intrinsic self-assembly state. We show that although the soluble peptide Boc-FF can be stably encapsulated for days, its self-assembly into nanostructures triggers jet-like release within seconds. Moreover, we exploit this self-assembly-mediated release to deliver other molecular species that are transported as cargo. These results demonstrate the role of self-assembly in modulating the transport of peptides across interfaces.


Assuntos
Nanopartículas , Cápsulas , Nanoestruturas , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA