Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18919, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344543

RESUMO

The main objective of radiotherapy is to exploit the curative potential of ionizing radiation while inflicting minimal radiation-induced damage to healthy tissue and sensitive organs. Proton beam therapy has been developed to irradiate the tumor with higher precision and dose conformity compared to conventional X-ray irradiation. The dose conformity of this treatment modality may be further improved if narrower proton beams are used. Still, this is limited by multiple Coulomb scattering of protons through tissue. The primary aim of this work was to develop techniques to produce narrow proton beams and investigate the resulting dose profiles. We introduced and assessed three different proton beam shaping techniques: (1) metal collimators (100/150 MeV), (2) focusing of conventional- (100/150 MeV), and (3) focusing of high-energy (350 MeV, shoot-through) proton beams. Focusing was governed by the initial value of the Twiss parameter [Formula: see text] ([Formula: see text]), and can be implemented with magnetic particle accelerator optics. The dose distributions in water were calculated by Monte Carlo simulations using Geant4, and evaluated by target to surface dose ratio (TSDR) in addition to the transverse beam size ([Formula: see text]) at the target. The target was defined as the location of the Bragg peak or the focal point. The different techniques showed greatly differing dose profiles, where focusing gave pronouncedly higher relative target dose and efficient use of primary protons. Metal collimators with radii [Formula: see text] gave low TSDRs ([Formula: see text]) and large [Formula: see text]([Formula: see text]). In contrast, a focused beam of conventional ([Formula: see text]) energy produced a very high TSDR ([Formula: see text]) with similar [Formula: see text] as a collimated beam. High-energy focused beams were able to produce TSDRs [Formula: see text] and [Formula: see text] around 1.5 mm. From this study, it appears very attractive to implement magnetically focused proton beams in radiotherapy of small lesions or tumors in close vicinity to healthy organs at risk. This can also lead to a paradigm change in spatially fractionated radiotherapy. Magnetic focusing would facilitate FLASH irradiation due to low losses of primary protons.


Assuntos
Terapia com Prótons , Radioatividade , Prótons , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA