Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
ACS Omega ; 9(24): 26724-26734, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911808

RESUMO

The cactus family plant has been used in folk medicine for a long time. In this work, Opuntia stricta chemical composition and its antioxidative and anti-inflammatory properties were investigated. Our results showed that O. stricta is highly rich in fibers and minerals. The present study assessed the levels of polyphenol contents and antioxidant and in vivo anti-inflammatory activities. The highest phenolic compounds and antioxidant activity were observed in the methanolic extract. Concerning the qualitative analysis, nine phenolic and organic acids were identified and quantified by high-performance liquid chromatography (HPLC). Luteolin-7-Glu (4.25 µg/g), apigenin-7-Glu (3.15 µg/g), and catechin (2.85 µg/g) were identified as major phenolic compounds. The predominant fatty acids detected by gas chromatography (GC) coupled to a flame ionization detector were linoleic and linolenic acids (35.11%). A factorial design plan was used to determine the effect of temperature, agitation speed, and maceration period on phenolic contents. In vivo, the methanol extract from Opuntia stricta showed anti-inflammatory activity. The computational modeling reveals that O. stricta compounds bind VEGF, IL-6, and TNF-α with high binding scores that reach -8.7 kcal/mol and establish significant molecular interactions with some key residues that satisfactorily explain both in vitro and in vivo findings. These data indicate that Opuntia stricta cladode powder could be potentially useful in pharmaceutical and food applications.

2.
Biogerontology ; 25(4): 705-737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38619670

RESUMO

Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.


Assuntos
Extratos Vegetais , Folhas de Planta , Polyalthia , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Sirtuína 2 , Superóxido Dismutase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA/métodos , Metanol/química , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Inflammopharmacology ; 32(2): 1593-1606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308794

RESUMO

BACKGROUND: Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process. PURPOSE: This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases. METHODS: Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence. RESULTS: The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine. CONCLUSION: The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.


Assuntos
Antineoplásicos , Ácido Oleanólico , Plectranthus , Antioxidantes/uso terapêutico , Fator de Necrose Tumoral alfa , Interleucina-6 , Ácido Oleanólico/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/uso terapêutico , Inflamação/tratamento farmacológico , Citocinas , Antineoplásicos/uso terapêutico , Óxido Nítrico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Lipopolissacarídeos/farmacologia
5.
J Biomol Struct Dyn ; : 1-22, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174738

RESUMO

Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and other small molecules across biological membranes. AQPs are involved in various physiological processes and pathological conditions, including cancer, making them as potential targets for anticancer therapy. However, the development of selective and effective inhibitors of AQPs remains a challenge. In this study, we explored the possibility of using natural sapogenins, a class of plant-derived aglycones of saponins with diverse biological activities, as potential inhibitors of AQPs. We performed molecular docking, dynamics simulation and binding energy calculation to investigate the binding and inhibition mechanism of 19 sapogenins against 13 AQPs (AQP0-AQP13) that are overexpressed in various cancers. Our results showed that out of 19 sapogenins, 8 (Diosgenin, Gitogenin, Tigogenin, Ruscogenin, Yamogenin, Hecogenin, Sarsasapogenin and Smilagenin) exhibited acceptable drug-like characteristics. These sapogenin also exhibited favourable binding affinities in the range of -7.6 to -13.4 kcal/mol, and interactions within the AQP binding sites. Furthermore, MD simulations provided insights into stability and dynamics of the sapogenin-AQP complexes. Most of the fluctuations in binding pocket were observed for AQP0-Gitogenin and AQP4-Diosgenin. However, remaining protein-ligand complex showed stable root mean square deviation (RMSD) plots, strong hydrogen bonding interactions, stable solvent-accessible surface area (SASA) values and minimum distance to the receptor. These observations suggest that natural sapogenin hold promise as novel inhibitors of AQPs, offering a basis for the development of innovative therapeutic agents for cancer treatment. However, further validation of the identified compounds through experiments is essential for translating these findings into therapeutic applications.Communicated by Ramaswamy H. Sarma.

6.
J Biomol Struct Dyn ; 42(6): 3193-3203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184152

RESUMO

3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) is an enzyme that critically synthesises the biologically active form of sulfate (PAPS) for all sulfation reactions. The discovery of PAPSS1 as a possible drug target for cancer therapy, specifically in non-small cell lung cancer, has prompted us to investigate potential small-molecule inhibitors of PAPSS1. Here, a structure-based virtual screening method was used to search for phytochemicals in the IMPPAT database to find potential inhibitors of PAPSS1. The primary hits were selected based on their physicochemical, ADMET, and drug-like properties. Then, the binding affinities were calculated and analyzed the interactions to identify safer and more effective hits. The research identified two phytochemicals, Guggulsterone and Corylin, that exhibited significant affinity and specific interaction with the ATP-binding pocket of PAPSS1. Structural observations made by molecular docking were further accompanied by molecular dynamics (MD) simulations and principal component analysis (PCA) to examine the conformational changes and stability of PAPSS1 with the elucidated compounds Guggulsterone and Corylin. MD simulation results suggested that the binding of Guggulsterone and Corylin stabilizes the PAPSS1 structure, leading to fewer conformational changes. This implies that these compounds may be useful in developing PAPSS1 inhibitors for the therapeutic development against non-small cell lung cancer (NSCLC). This study highlights the potential of phytochemicals as PAPSS1 inhibitors and the utility of computational approaches in drug discovery.Communicated by Ramaswamy H. Sarma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia
7.
J Biomol Struct Dyn ; 42(3): 1368-1380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37191027

RESUMO

A revival interest has been given to natural products as sources of phytocompounds to be used as alternative treatment against infectious diseases. In this context, we aimed to investigate the antimicrobial potential of Ziziphus honey (ZH) against twelve clinical bacterial strains and several yeasts and molds using in vitro and computational approaches. The well-diffusion assay revealed that ZH was able to induce growth inhibition of most Gram-positive and Gram-negative bacteria. The high mean growth inhibition zone (mGIZ) was recorded in E. coli (Clinical strain, 217), S. aureus followed by E. coli ATCC 10536 (mGIZ values: 41.00 ± 1 mm, 40.67 ± 0.57 mm, and 34.67 ± 0.57 mm, respectively). The minimal bactericidal concentrations (MBCs) and minimal fungicidal concentration values (MFCs) from approximately 266.33 mg/mL to over 532.65 mg/mL. Molecular docking results revealed that the identified compounds maltose, 2-furoic acid, isopropyl ester, 2,4-imidazolidinedione, 5-(2-methylpropyl)-(S)- and 3,4,5-trihydroxytoluene, S-Methyl-L-Cysteine, 2-Furancarboxylic acid, L-Valine-N-ethoxycarbonyl, Hexanoic acid, 3,5,5-trimethyl-, Methyl-beta-D-thiogalactoside, gamma-Sitosterol, d-Mannose, 4-O-Methylmannose, 2,4-Imidazolidinedione, 5-(2-methylpropyl)- (S) were found to have good affinity for targeted receptor, respectively. Through a 100-ns dynamic simulation research, binding interactions and stability between promising phytochemicals and the active residues of the studied enzymes were confirmed. The ADMET profiling of all identified compounds revealed that most of them could be qualified as biologically active with good absorption and permeation. Overall, the results highlighted the efficiency of ZH against the tested clinical pathogenic strains. The antimicrobial potential and the potency displayed by the identified compounds could imply their further pharmacological applications.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Mel , Ziziphus , Antibacterianos/farmacologia , Staphylococcus aureus , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas , Escherichia coli , Simulação de Acoplamento Molecular , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
8.
J Mol Recognit ; 37(1): e3067, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956676

RESUMO

Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases/química , Inibidores de Proteínas Quinases/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-38085438

RESUMO

In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.

10.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067422

RESUMO

Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.


Assuntos
Illicium , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Percepção de Quorum , Illicium/química , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Pseudomonas aeruginosa
11.
ACS Omega ; 8(50): 48344-48359, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144096

RESUMO

Breast cancer is a major global health issue for women. Thyme oil, extracted from Thymus vulgaris L., has shown promising anticancer effects. In the present study, we investigated how Thyme oil can influence breast cancer treatment using a multimethod approach. We used network pharmacology to identify the active compounds of Thyme oil, their molecular targets, and the pathways involved in breast cancer. We found that Thyme oil can modulate several key proteins (EGFR, AKT1, ESR1, HSP90AA1, STAT-3, SRC, IL-6, HIF1A, JUN, and BCL2) and pathways (EGFR tyrosine kinase inhibitor resistance, prolactin signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway, ERBB signaling pathway, AGE-RAGE signaling pathway, JAK-STAT signaling pathway, FoxO signaling pathway, and PI3K-AKT signaling pathway) related to breast cancer progression. We then used molecular docking and dynamics to study the interactions and stability of the Thyme oil-compound complexes. We discovered three potent compounds (aromadendrene, α-humulene, and viridiflorene) that can bind strongly to important breast cancer proteins. We also performed in vitro experiments on MCF-7 cells to confirm the cytotoxicity and antiproliferative effects of Thyme oil. We observed that Thyme oil can inhibit cancer cell growth and proliferation at a concentration of 365.37 µg/mL. Overall, our results provide a comprehensive understanding of the pharmacological mechanism of Thyme oil in breast cancer treatment and suggest its potential as a new or adjuvant therapy. Further studies are needed to validate and optimize the therapeutic efficacy of Thyme oil and its active compounds.

12.
ACS Omega ; 8(43): 39964-39983, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929080

RESUMO

The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.

13.
Biochimie ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918463

RESUMO

Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.

15.
Plants (Basel) ; 12(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653914

RESUMO

Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.

16.
Food Chem Toxicol ; 180: 114014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659576

RESUMO

Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.

17.
J Biomol Struct Dyn ; : 1-26, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776015

RESUMO

Lung cancer remains a formidable global health challenge, necessitating the exploration of novel therapeutic approaches. This study investigates the potential of Cuscuta reflexa Roxb. stem extract as an anticancer agent against human lung cancer, focusing on its antioxidative and ROS-dependent apoptotic effects. Utilizing a combination of network pharmacology and in-vitro experimental validation, we delineate the multifaceted molecular mechanisms underlying the observed effects. The antioxidant potential of C. reflexa stem extract was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS•+) and ferric reducing/antioxidant power (FRAP), hydroxyl free radical scavenging, reactive nitrogen oxide scavenging and super oxide anion radical scavenging assays. Furthermore, the antiproliferative and proapoptotic effect of C. reflexa stem extract was evaluated against A549 lung adenocarcinoma cell line using the consecrated sulforhodamine B (SBR) and Annexin V-PI assays. Additionally, the mitochondrial membrane potential (MMP) and the total reactive oxygen species (ROS) estimation assays were performed. As a result, network pharmacology analysis revealed a complex interaction network between the bioactive constituents of C. reflexa and key proteins implicated in lung cancer progression. The C. reflexa stem extract showed dose-dependent antioxidant activity against DPPH• (IC50 - 87.38 µg/mL), reactive nitrogen oxide (IC50 - 318.34 µg/mL), FRAP (IC50 - 359.96 µg/mL), hydroxy free radicals (IC50 - 526.12 µg/mL) than ABTS●+ (IC50 - 698.45 µg/mL) and super oxide anion (IC50 - 892.71 µg/mL) as well as cytotoxic activity against A549 cells (IC50 - 436.80 µg/mL). Observations of morphological features in treated cells have revealed hallmark of apoptosis properties. Furthermore, as a result of treatment with C. reflexa stem extract, ROS generation and mitochondrial depolarization were increased in A549 cells, suggesting that this treatment has significant apoptotic properties. . These findings highlight the potential utility of this natural extract as an innovative therapeutic strategy for lung cancer treatment. The integration of network pharmacology and experimental validation enhances our understanding of the underlying mechanisms and provide the way for further translational research.Communicated by Ramaswamy H. Sarma.

18.
Antibiotics (Basel) ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760712

RESUMO

The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.

19.
Front Pharmacol ; 14: 1198425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693900

RESUMO

Polyalthia longifolia var. angustifolia Thw. (Annonaceae), is a famous traditional medicinal plant in Asia. Ample data specifies that the medicinal plant P. longifolia has anticancer activity; however, the detailed mechanisms of action still need to be well studied. Recent studies have revealed the cytotoxicity potential of P. longifolia leaf against HeLa cells. Therefore, the current study was conducted to examine the regulation of miRNAs in HeLa cancer cells treated with the standardized P. longifolia methanolic leaf extract (PLME). The regulation of miRNAs in HeLa cancer cells treated with the standardized PLME extract was studied through Illumina, Hi-Seq. 2000 platform of Next-Generation Sequencing (NGS) and various in silico bioinformatics tools. The PLME treatment regulated a subset of miRNAs in HeLa cells. Interestingly, the PLME treatment against HeLa cancer cells identified 10 upregulated and 43 downregulated (p < 0.05) miRNAs associated with apoptosis induction. Gene ontology (GO) term analysis indicated that PLME induces cell death in HeLa cells by inducing the pro-apoptotic genes. Moreover, the downregulated oncomiRs modulated by PLME treatment in HeLa cells were identified, targeting apoptosis-related genes through gene ontology and pathway analysis. The LC-ESI-MS/MS analysis identified the presence of Vidarabine and Anandamide compounds that were previously reported to exhibit anticancer activity. The findings of this study obviously linked the cell cytotoxicity effect of PLME treatment against the HeLa cells with regulating various miRNAs expression related to apoptosis induction in the HeLa cells. PLME treatment induced apoptotic HeLa cell death mechanism by regulating multiple miRNAs. The identified miRNAs regulated by PLME may provide further insight into the mechanisms that play a critical role in cervical cancer, as well as novel ideas regarding gene therapeutic strategies.

20.
Life (Basel) ; 13(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37629596

RESUMO

Globally, breast cancer (BC), the second-biggest cause of cancer death, occurs due to unregulated cell proliferation leading to metastasis to other parts of the human organ. Recently, the exploration of naturally derived anticancer agents has become popular due to their fewer adverse effects. Among the natural products, soybean is a very well-known legume that contains important bioactive compounds such as diadazine, glycetin, genistein, and genistin. Therefore, keeping its therapeutic potential in mind, multi-targeted molecular docking and simulation studies were conducted to explore the potential role of soybean-derived isoflavone genistin against several breast cancer-signaling proteins (ER-alpha, ER-Beta, collapsin response mediator protein 2, CA 15-3, human epidermal growth factor receptor 2). A comparative study of the genistin-protein docked complex was explored to investigate its potential role in BC. The molecular binding energy (∆G) of the docked complex was calculated along with ADMET properties. The molecular docking score of genistin with ubiquitin-like protein activation complex-a type of Cancer Antigen (CA) 15.3 (PDB ID-2NVU, 5T6P, and 1YX8) showed the highest binding energy, ranging from -9.5 to -7.0 Kcal/mol, respectively. Furthermore, the highest docking scores of the complex were additionally put through molecular dynamics (MD) simulation analysis. MD simulations of the selected complex were performed at 100 ns to study the stability of the genistin-ubiquitin-like protein CA 15.3 complex, which appeared to be quite stable. Additionally, the ADMET study demonstrated that genistin complies with all drug-likeness standards, including Lipinski, Egan, Veber, Ghose, and Muegge. Therefore, based on the results, genistin can be considered as one of the potential drugs for the management and treatment of BC. In addition, the obtained results suggest that genistin could pave the way for new drug discovery to manage breast cancer and has potential in the development of nutraceuticals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA