Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(10): 1488-1499, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35637420

RESUMO

High-order three-dimensional (3D) interactions between more than two genomic loci are common in human chromatin, but their role in gene regulation is unclear. Previous high-order 3D chromatin assays either measure distant interactions across the genome or proximal interactions at selected targets. To address this gap, we developed Pore-C, which combines chromatin conformation capture with nanopore sequencing of concatemers to profile proximal high-order chromatin contacts at the genome scale. We also developed the statistical method Chromunity to identify sets of genomic loci with frequencies of high-order contacts significantly higher than background ('synergies'). Applying these methods to human cell lines, we found that synergies were enriched in enhancers and promoters in active chromatin and in highly transcribed and lineage-defining genes. In prostate cancer cells, these included binding sites of androgen-driven transcription factors and the promoters of androgen-regulated genes. Concatemers of high-order contacts in highly expressed genes were demethylated relative to pairwise contacts at the same loci. Synergies in breast cancer cells were associated with tyfonas, a class of complex DNA amplicons. These results rigorously link genome-wide high-order 3D interactions to lineage-defining transcriptional programs and establish Pore-C and Chromunity as scalable approaches to assess high-order genome structure.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Androgênios , Cromatina/genética , Humanos , Fatores de Transcrição/genética
2.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007263

RESUMO

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Assuntos
Variação Estrutural do Genoma/genética , Genômica/métodos , Neoplasias/genética , Inversão Cromossômica/genética , Cromotripsia , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Genoma Humano/genética , Humanos , Mutação/genética , Sequenciamento Completo do Genoma/métodos
3.
Oncotarget ; 10(7): 707-716, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30774773

RESUMO

Ubiquitously-expressed, prefoldin-like chaperone (UXT) also called Androgen Receptor Trapped clone-27 (ART-27) is widely expressed in human tissues. Our previous studies showed that UXT regulates transcription repression including androgen receptor (AR) signaling in prostate cancer. Here we analyzed a tissue microarray consisting of normal prostate, benign prostatic hyperplasia, high grade prostatic intraepithelial neoplasia (HGPIN) and primary prostate cancer cases for UXT protein expression. We found that HGPIN and malignant tumors have significantly decreased UXT expression compared to the normal prostate. Loss of UXT expression in primary prostate cancer is positively associated with high Gleason grade and poor relapse-free survival. We engineered prostate-specific Uxt KO mice that developed a hyperplastic phenotype with apparent prostate secretion fluid blockage as well as PIN by 4-6 months. Doubly mutant Uxt KO /Pten KO mice developed a more aggressive PIN phenotype. UXT depletion in prostate cancer cells also increased retroelements expression, including LINE-1 and Alu. Consistent with this finding Uxt KO mice have increased LINE-1 protein levels in the prostate compared to control mice. In addition, cancer cells with UXT depletion have increased retrotransposition activity and accumulated DNA damage. Our findings demonstrate that loss of UXT is an early event during prostate cancer progression, which may contribute to genome instability.

4.
J Biol Inorg Chem ; 16(4): 539-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21240532

RESUMO

In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H(2)O(2).


Assuntos
Heme/química , Hemoglobinas/química , Histidina/química , Synechococcus/química , Synechocystis/química , Peróxido de Hidrogênio/química , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA