Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 572: 111948, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164149

RESUMO

Congenital hypothyroidism (CH) due to thyroglobulin (TG) variants causes very low serum TG levels with normal or enlarged thyroid glands, depending on the severity of the defect, and with autosomal recessive inheritance. The purpose of this study was to functionally characterize p.Cys1281Tyr variant in the TG gene in order to increase our knowledge of the molecular mechanisms associated with CH. In order to find evidence that support the hypothesis that the p.Cys1281Tyr variant would affect the TG folding were performed amino acid prediction, 3D modeling and transient expression analysis in HEK293T cells. 18 of the 21″in silico" algorithms predict a deleterious effect of the p.Cys1281Tyr variant. The full-length 3D model p.Cys1281Tyr TG showed disulfide bond cleavage between the cysteines at positions 1249 and 1281 and rearrangement of the TG structure, while transient expression analysis indicated that p.Cys1281Tyr causes retention of the protein inside the cell. Consequently, these results show that this pathogenic variant makes it impossible for TG to fulfill its function in the biosynthesis process of thyroid hormones, causing CH. In conclusion, our results confirm the pathophysiological importance of misfolding of TG as a consequence of p.Cys1281Tyr variant located in the hinge module/flap region of TG.


Assuntos
Hipotireoidismo Congênito , Bócio , Humanos , Hipotireoidismo Congênito/genética , Tireoglobulina/genética , Tireoglobulina/metabolismo , Células HEK293 , Bócio/genética , Hormônios Tireóideos
2.
Mol Cell Endocrinol ; 558: 111748, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995307

RESUMO

Thyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.1.1. The proportion of missense cysteine variants and nonsense, frameshift, and splice acceptor/donor variants were analyzed in each ethnic group (European (Non-Finnish), European (Finnish), African/African Americans, Latino/Admixed American, East Asian, South Asian, Ashkenazi Jewish, Other). The results showed a clear predominance of frameshift variants in the East Asian (82%) and European (Finnish) (75%) population, whereas the splice site variants predominate in African/African Americans (99.46%), Other (96%), Latino/Admixed American (94%), South Asian (86%), European (Non-Finnish) (56%) and Ashkenazi Jewish (56%) populations. The analysis of the distribution of the variants indexed in gnomAD v2.1.1 database revealed that most missense variants identified in the An peroxidase domain map in exon 8, followed by exons 11, 7 and 9, and finally in descending order by exons 10, 6, 12 and 5. In total, 183 novel TPO variants were described (13 missense cysteine's variants, 158 missense variants involving the An peroxidase domain and 12 splicing acceptor or donor sites variants) which were not reported in the literature and that would have deleterious effects on prediction programs. In the gnomAD v2.1.1 population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:77. In conclusion, we provide an updated and curated reference source of new TPO variants for application in clinical diagnosis and genetic counseling. Also, this work contributes to elucidating the molecular basis of CH associated with TPO defects.


Assuntos
Hipotireoidismo Congênito , Tireoglobulina , Humanos , Tireoglobulina/genética , Iodeto Peroxidase/genética , Monoiodotirosina/genética , Iodetos , Biologia Computacional , Cisteína , Hipotireoidismo Congênito/genética , Hormônios Tireóideos , Mutação/genética , Peroxidases/genética , Algoritmos
3.
Mol Cell Endocrinol ; 534: 111359, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34119605

RESUMO

Thyroglobulin (TG) is a large glycosylated protein of 2767 amino acids, secreted by the thyrocytes into the follicular lumen. It plays an essential role in the process of thyroid hormone synthesis. TG gene variants lead to permanent congenital hypothyroidism. In the present work, we report a detailed population and bioinformatic prediction analyses of the TG variants indexed in the Genome Aggregation Database (gnomAD). The results showed a clear predominance of nonsense variants in the European (Finnish), European (Non-Finnish) and Ashkenazi Jewish ethnic groups, whereas the splice site variants predominate in South Asian and African/African-American populations. In total, 282 novel TG variants were described (47 missense involving the wild-type cysteine residues, 177 missense located in the ChEL domain and 58 splice site variants) which were not reported in the literature and that would have deleterious effects in prediction programs. In the gnomAD population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:320. In conclusion, we provide an updated and curated reference source for the diagnosis of thyroid disease, mainly to congenital hypothyroidism due to TG deficiency. The identification and characterization of TG variants is undoubtedly a valuable approach to study the TG structure/function relations and an important tool for clinical diagnosis and genetic counseling.


Assuntos
Biologia Computacional/métodos , Hipotireoidismo Congênito/genética , Etnicidade/genética , Variação Genética , Tireoglobulina/genética , Algoritmos , Processamento Alternativo , Códon sem Sentido , Curadoria de Dados , Bases de Dados Genéticas , Humanos , Mutação de Sentido Incorreto , Domínios Proteicos , Tireoglobulina/química
4.
Neurochem Res ; 38(11): 2323-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013886

RESUMO

We have previously demonstrated that prenatal stress (PS) exerts an impairment of midbrain dopaminergic (DA) system metabolism especially after puberty, suggesting a particular sensitivity of DA development to variations in gonadal hormonal peaks. Furthermore we demonstrated that PS alters the long term androgens profile of the rat male offspring from prepubertal to adult stages. In this work we evaluated the sexual hormones activational effects on the DA system by analysing PS effects on the dopaminergic D2-like (D2R) and on the gonadal hormones receptor levels on cortical and hippocampal areas of prepubertal and adult male offspring. We further evaluated the dendritic arborization in the same areas by quantifying MAP2 immunoexpresion. Our results show that PS affected oestrogen receptor alpha (ERα) expression: mRNA er1s and ERα protein levels were decreased on prefrontal cortex and hippocampus of adult offspring. Moreover, PS reduced D2R protein levels in hippocampus of prepubertal rats. Morphological studies revealed that prepubertal PS rats presented decreased MAP2 immunoexpression in both areas suggesting that PS reduces the number of dendritic arborizations. Our findings suggest that PS exerts long-term effects on the DA system by altering the normal connectivity in the areas, and by modulating the expression of D2R and ERα in an age-related pattern. Since the developing forebrain DA system was shown to be influenced by androgen exposure, and PS was shown to disrupt perinatal testosterone surges, our results suggest that prenatal insults might be affecting the organizational role of androgens and differentially modulating their activational role on the DA development.


Assuntos
Envelhecimento/fisiologia , Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico/metabolismo , Animais , Dopamina/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Gravidez , Ratos , Receptores de Dopamina D2/metabolismo , Restrição Física/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA