Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39457108

RESUMO

The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναµÎ¹ς) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.


Assuntos
Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Animais , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39201458

RESUMO

Endometrial cancer is the most common malignant tumor of the female reproductive system. It develops in the mucous membrane lining the inside of the uterine body-the endometrium, through the abnormal and continuous growth of cancer cells originating from the uterine mucosa. In recent years, there has been a significant increase in the number of cases in European countries. Photodynamic therapy (PDT) is an innovative and dynamically developing medical procedure, useful in the treatment of cancer and non-cancer tissue conditions. The PDT reaction involves the activation of a photosensitizing substance with visible light, which in turn leads to the formation of free oxygen radicals, which contribute to the destruction of the cell. PDT is minimally invasive, has few side effects, and preserves organ anatomy and function. Both diagnostics and photodynamic therapy as modern methods of treatment are becoming more and more popular in many research units around the world. They are most often practiced and tested in in vitro experimental conditions. In clinical practice, the use of PDT is rare. Comprehensive cooperation between scientists contributes to taking steps towards obtaining new, synthetic photosensitizers, directing their physicochemical properties, and showing the impact on a given organism. This review examines the evidence for the potential and usefulness of PDT in the treatment of endometrial cancer. This review highlights that PDT is gaining popularity and is becoming a promising field of medical research.


Assuntos
Neoplasias do Endométrio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Fotoquimioterapia/métodos , Feminino , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Animais
3.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201395

RESUMO

Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioma , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125828

RESUMO

Over the past decades, medicine has made enormous progress, revolutionized by modern technologies and innovative therapeutic approaches. One of the most exciting branches of these developments is photodynamic therapy (PDT). Using a combination of light of a specific wavelength and specially designed photosensitizing substances, PDT offers new perspectives in the fight against cancer, bacterial infections, and other diseases that are resistant to traditional treatment methods. In today's world, where there is a growing problem of drug resistance, the search for alternative therapies is becoming more and more urgent. Imagine that we could destroy cancer cells or bacteria using light, without the need to use strong chemicals or antibiotics. This is what PDT promises. By activating photosensitizers using appropriately adjusted light, this therapy can induce the death of cancer or bacterial cells while minimizing damage to surrounding healthy tissues. In this work, we will explore this fascinating method, discovering its mechanisms of action, clinical applications, and development prospects. We will also analyze the latest research and patient testimonies to understand the potential of PDT for the future of medicine.


Assuntos
Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Infecções Bacterianas/tratamento farmacológico
5.
Curr Issues Mol Biol ; 46(7): 7239-7257, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39057071

RESUMO

Photodynamic therapy (PDT) can not only directly eliminate cancer cells, but can also stimulate antitumor immune responses. It also affects the expression of immune checkpoints. The purpose of this review is to collect, analyze, and summarize recent news about PDT and immune checkpoints, along with their inhibitors, and to identify future research directions that may enhance the effectiveness of this approach. A search for research articles published between January 2023 and March 2024 was conducted in PubMed/MEDLINE. Eligibility criteria were as follows: (1) papers describing PDT and immune checkpoints, (2) only original research papers, (3) only papers describing new reports in the field of PDT and immune checkpoints, and (4) both in vitro and in vivo papers. Exclusion criteria included (1) papers written in a language other than Polish or English, (2) review papers, and (3) papers published before January 2023. 24 papers describing new data on PDT and immune checkpoints have been published since January 2023. These included information on the effects of PDT on immune checkpoints, and attempts to associate PDT with ICI and with other molecules to modulate immune checkpoints, improve the immunosuppressive environment of the tumor, and resolve PDT-related problems. They also focused on the development of new nanoparticles that can improve the delivery of photosensitizers and drugs selectively to the tumor. The effect of PDT on the level of immune checkpoints and the associated activity of the immune system has not been fully elucidated further, and reports in this area are divergent, indicating the complexity of the interaction between PDT and the immune system. PDT-based strategies have been shown to have a beneficial effect on the delivery of ICI to the tumor. The utility of PDT in enhancing the induction of the antitumor response by participating in the triggering of immunogenic cell death, the exposure of tumor antigens, and the release of various alarm signals that together promote the activation of dendritic cells and other components of the immune system has also been demonstrated, with the result that PDT can enhance the antitumor immune response induced by ICI therapy. PDT also enables multifaceted regulation of the tumor's immunosuppressive environment, as a result of which ICI therapy has the potential to achieve better antitumor efficacy. The current review has presented evidence of PDT's ability to modulate the level of immune checkpoints and the effectiveness of the association of PDT with ICIs and other molecules in inducing an effective immune response against cancer cells. However, these studies are at an early stage and many more observations need to be made to confirm their efficacy. The new research directions indicated may contribute to the development of further strategies.

6.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065781

RESUMO

Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.

7.
Biomedicines ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790923

RESUMO

Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.

8.
Front Oncol ; 14: 1373263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803535

RESUMO

Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.

9.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542180

RESUMO

The origins of photodynamic therapy (PDT) date back to 1904. Since then, the amount of research proving PDT and, consequently, its applicability to various disease states has steadily increased. Currently, PDT is mainly used in oncology to destroy cancer cells. It is being worked on for possible use in other medical fields as well, including cardiology. It can be used in the prevention of restenosis, often occurring after vascular surgical interventions, for destroying atherosclerotic plaques and as a new ablative method of ectopic centers in the treatment of atrial fibrillation. The purpose of this review is to summarize the knowledge to date regarding the therapeutic potential of using PDT for various pathological conditions in cardiology. The review also focuses on the current limitations associated with the use of PDT and identifies areas where more research is needed to develop better drug regimens. Materials and methods: The study analyzed 189 medical articles. The articles came from PubMed, Frontiers, Google Scholar, Science Direct and Web of Science databases. Through the excitation of light, a photosensitizer (PS) introduced into the body, the destruction of pathological cells occurs. PTD is widely used in oncology of the central nervous system (CNS). This process is made possible by the production of free oxygen radicals (ROS) and singlet oxygen, which generate oxidative stress that destroys sensitive cancer cells. In recent years, photosensitizers have also been discovered to have a strong affinity for macrophages that fill atherosclerotic plaques, making these compounds suitable for treating atherosclerosis. By inducing apoptosis of smooth muscle cells, inactivating basic fibroblast growth factor (FGF-ß) and inhibiting endothelial cell hyperplasia, PDT can be used to prevent restenosis after surgical proceduresPDT appears to be a minimally invasive and highly effective therapeutic method, especially when combined with other therapeutic methods. Unfortunately, the small number of animal model studies and human clinical trials greatly limit the applicability of PDT on a wider scale. Current limitations, such as the depth of penetration, delivery of photosensitizer particles to the direct site of the lesion or the appropriate choice of photosensitizer in relation to the nature of the pathology, unfortunately make it impossible to replace current therapeutic approaches.


Assuntos
Cardiologia , Fotoquimioterapia , Placa Aterosclerótica , Animais , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Placa Aterosclerótica/tratamento farmacológico , Radicais Livres
10.
Diagnostics (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473036

RESUMO

Photodynamic therapy (PDT) is increasingly used in modern medicine. It has found application in the treatment of breast cancer. The most common cancer among women is breast cancer. We collected cancer cells from the breast from the material received after surgery. We focused on tumors that were larger than 10 mm in size. Breast cancer tissues for this quantitative non-contrast magnetic resonance imaging (MRI) study could be seen macroscopically. The current study aimed to present findings on quantitative non-contrast MRI of breast cancer cells post-PDT through the evaluation of relaxation times. The aim of this work was to use and optimize a 1.5 T MRI system. MRI tests were performed using a clinical scanner, namely the OPTIMA MR360 manufactured by General Electric HealthCare. The work included analysis of T1 and T2 relaxation times. This analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MRI images saved in the DICOM3.0 standard. T1 and T2 measurements were subjected to the Shapiro-Wilk test, which showed that both samples belonged to a normal distribution, so a parametric t-test for dependent samples was used to test for between-sample variability. The study included 30 sections tested in 2 stages, with consistent technical parameters. For T1 measurements, 12 scans were performed with varying repetition times (TR) and a constant echo time (TE) of 3 ms. For T2 measurements, 12 scans were performed with a fixed repetition time of 10,000 ms and varying echo times. After treating samples with PpIX disodium salt and bubbling with pure oxygen, PDT irradiation was applied. The cell relaxation time after therapy was significantly shorter than the cell relaxation time before PDT. The cells were exposed to PpIX disodium salt as the administered pharmacological substance. The study showed that the therapy significantly affected tumor cells, which was confirmed by a significant reduction in tumor cell relaxation time on the MRI results.

11.
Cancers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473328

RESUMO

Cancer is one of the most significant causes of death worldwide. Despite the rapid development of modern forms of therapy, results are still unsatisfactory. The prognosis is further worsened by the ability of cancer cells to metastasize. Thus, more effective forms of therapy, such as photodynamic therapy, are constantly being developed. The photodynamic therapeutic regimen involves administering a photosensitizer that selectively accumulates in tumor cells or is present in tumor vasculature prior to irradiation with light at a wavelength corresponding to the photosensitizer absorbance, leading to the generation of reactive oxygen species. Reactive oxygen species are responsible for the direct and indirect destruction of cancer cells. Photodynamically induced local inflammation has been shown to have the ability to activate an adaptive immune system response resulting in the destruction of tumor lesions and the creation of an immune memory. This paper focuses on presenting the latest scientific reports on the specific immune response activated by photodynamic therapy. We present newly discovered mechanisms for the induction of the adaptive response by analyzing its various stages, and the possible difficulties in generating it. We also present the results of research over the past 10 years that have focused on improving the immunological efficacy of photodynamic therapy for improved cancer therapy.

12.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474220

RESUMO

Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.


Assuntos
Doenças Cardiovasculares , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Doenças Cardiovasculares/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico
13.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474256

RESUMO

The aim of this work was to use and optimize a 1.5 Tesla magnetic resonance imaging (MRI) system for three-dimensional (3D) images of small samples obtained from breast cell cultures in vitro. The basis of this study was to design MRI equipment to enable imaging of MCF-7 breast cancer cell cultures (about 1 million cells) in 1.5 and 2 mL glass tubes and/or bioreactors with an external diameter of less than 20 mm. Additionally, the development of software to calculate longitudinal and transverse relaxation times is described. Imaging tests were performed using a clinical MRI scanner OPTIMA 360 manufactured by GEMS. Due to the size of the tested objects, it was necessary to design additional receiving circuits allowing for the study of MCF-7 cell cultures placed in glass bioreactors. The examined sample's volume did not exceed 2.0 mL nor did the number of cells exceed 1 million. This work also included a modification of the sequence to allow for the analysis of T1 and T2 relaxation times. The analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MR images saved in the DICOM3.0 standard which ensures that the data analyzed are reliable and unchangeable in an unintentional manner that could affect the measurement results. The possibility of using 1.5 T MRI systems for cell culture research providing quantitative information from in vitro studies was realized. The scanning resolution for FOV = 5 cm and the matrix was achieved at a level of resolution of less than 0.1 mm/pixel. Receiving elements were built allowing for the acquisition of data for MRI image reconstruction confirmed by images of a phantom with a known structure and geometry. Magnetic resonance sequences were modified for the saturation recovery (SR) method, the purpose of which was to determine relaxation times. An application in MATLAB was developed that allows for the analysis of T1 and T2 relaxation times. The relaxation times of cell cultures were determined over a 6-week period. In the first week, the T1 time value was 1100 ± 40 ms, which decreased to 673 ± 59 ms by the sixth week. For T2, the results were 171 ± 10 ms and 128 ± 12 ms, respectively.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tamanho da Amostra , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Técnicas de Cultura de Células
14.
Cancers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339396

RESUMO

Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of various diseases. This non-invasive approach utilizes photosensitizing agents and light to selectively target and destroy abnormal cells, providing a valuable alternative to traditional treatments. Research studies have explored the application of PDT in different areas of the head. Research is focusing on a growing number of new developments and treatments for cancer. One of these methods is PDT. Photodynamic therapy is now a revolutionary, progressive method of cancer therapy. A very important feature of PDT is that cells cannot become immune to singlet oxygen. With this therapy, patients can avoid lengthy and costly surgeries. PDT therapy is referred to as a safe and highly selective therapy. These studies collectively highlight the potential of PDT as a valuable therapeutic option in treating the head area. As research in this field progresses, PDT may become increasingly integrated into the clinical management of these conditions, offering a balance between effectiveness and minimal invasiveness.

15.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338997

RESUMO

The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Trastuzumab/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/tratamento farmacológico
16.
Biomedicines ; 12(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397977

RESUMO

Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.

17.
Front Chem ; 11: 1250621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075490

RESUMO

Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.

18.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069213

RESUMO

In this review, we delve into the realm of photodynamic therapy (PDT), an established method for combating cancer. The foundation of PDT lies in the activation of a photosensitizing agent using specific wavelengths of light, resulting in the generation of reactive oxygen species (ROS), notably singlet oxygen (1O2). We explore PDT's intricacies, emphasizing its precise targeting of cancer cells while sparing healthy tissue. We examine the pivotal role of singlet oxygen in initiating apoptosis and other cell death pathways, highlighting its potential for minimally invasive cancer treatment. Additionally, we delve into the complex interplay of cellular components, including catalase and NOX1, in defending cancer cells against PDT-induced oxidative and nitrative stress. We unveil an intriguing auto-amplifying mechanism involving secondary singlet oxygen production and catalase inactivation, offering promising avenues for enhancing PDT's effectiveness. In conclusion, our review unravels PDT's inner workings and underscores the importance of selective illumination and photosensitizer properties for achieving precision in cancer therapy. The exploration of cellular responses and interactions reveals opportunities for refining and optimizing PDT, which holds significant potential in the ongoing fight against cancer.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Oxigênio Singlete , Catalase , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico
19.
Front Pharmacol ; 14: 1250699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841921

RESUMO

Brain tumors, including glioblastoma multiforme, are currently a cause of suffering and death of tens of thousands of people worldwide. Despite advances in clinical treatment, the average patient survival time from the moment of diagnosis of glioblastoma multiforme and application of standard treatment methods such as surgical resection, radio- and chemotherapy, is less than 4 years. The continuing development of new therapeutic methods for targeting and treating brain tumors may extend life and provide greater comfort to patients. One such developing therapeutic method is photodynamic therapy. Photodynamic therapy is a progressive method of therapy used in dermatology, dentistry, ophthalmology, and has found use as an antimicrobial agent. It has also found wide application in photodiagnosis. Photodynamic therapy requires the presence of three necessary components: a clinically approved photosensitizer, oxygen and light. This paper is a review of selected literature from Pubmed and Scopus scientific databases in the field of photodynamic therapy in brain tumors with an emphasis on glioblastoma treatment.

20.
Brain Sci ; 13(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759900

RESUMO

On average, there are about 300,000 new cases of brain cancer each year. Studies have shown that brain and central nervous system tumors are among the top ten causes of death. Due to the extent of this problem and the percentage of patients suffering from brain tumors, innovative therapeutic treatment methods are constantly being sought. One such innovative therapeutic method is photodynamic therapy (PDT). Photodynamic therapy is an alternative and unique technique widely used in dermatology and other fields of medicine for the treatment of oncological and nononcological lesions. Photodynamic therapy consists of the destruction of cancer cells and inducing inflammatory changes by using laser light of a specific wavelength in combination with the application of a photosensitizer. The most commonly used photosensitizers include 5-aminolevulinic acid for the enzymatic generation of protoporphyrin IX, Temoporfin-THPC, Photofrin, Hypericin and Talaporfin. This paper reviews the photosensitizers commonly used in photodynamic therapy for brain tumors. An overview of all three generations of photosensitizers is presented. Along with an indication of the limitations of the treatment of brain tumors, intraoperative photodynamic therapy and its possibilities are described as an alternative therapeutic method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA