Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Care Med ; 47(6): e478-e484, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889027

RESUMO

OBJECTIVES: To determine if trigeminal nerve stimulation can ameliorate the consequences of acute blood loss and improve survival after severe hemorrhagic shock. DESIGN: Animal study. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats. INTERVENTIONS: Severe hemorrhagic shock was induced in rats by withdrawing blood until the mean arterial blood pressure reached 27 ± 1 mm Hg for the first 5 minutes and then maintained at 27 ± 2 mm Hg for 30 minutes. The rats were randomly assigned to either control, vehicle, or trigeminal nerve stimulation treatment groups. The effects of trigeminal nerve stimulation on survival rate, autonomic nervous system activity, hemodynamics, brain perfusion, catecholamine release, and systemic inflammation after severe hemorrhagic shock in the absence of fluid resuscitation were analyzed. MEASUREMENTS AND MAIN RESULTS: Trigeminal nerve stimulation significantly increased the short-term survival of rats following severe hemorrhagic shock in the absence of fluid resuscitation. The survival rate at 60 minutes was 90% in trigeminal nerve stimulation treatment group whereas 0% in control group (p < 0.001). Trigeminal nerve stimulation elicited strong synergistic coactivation of the sympathetic and parasympathetic nervous system as measured by heart rate variability. Without volume expansion with fluid resuscitation, trigeminal nerve stimulation significantly attenuated sympathetic hyperactivity paralleled by increase in parasympathetic tone, delayed hemodynamic decompensation, and improved brain perfusion following severe hemorrhagic shock. Furthermore, trigeminal nerve stimulation generated sympathetically mediated low-frequency oscillatory patterns of systemic blood pressure associated with an increased tolerance to central hypovolemia and increased levels of circulating norepinephrine levels. Trigeminal nerve stimulation also decreased systemic inflammation compared with the vehicle. CONCLUSIONS: Trigeminal nerve stimulation was explored as a novel resuscitation strategy in an animal model of hemorrhagic shock. The results of this study showed that the stimulation of trigeminal nerve modulates both sympathetic and parasympathetic nervous system activity to activate an endogenous pressor response, improve cerebral perfusion, and decrease inflammation, thereby improving survival.


Assuntos
Terapia por Estimulação Elétrica , Hipovolemia/fisiopatologia , Ressuscitação/métodos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Nervo Trigêmeo , Animais , Pressão Sanguínea , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Frequência Cardíaca , Hipovolemia/etiologia , Interleucina-6/sangue , Masculino , Norepinefrina/sangue , Sistema Nervoso Parassimpático/fisiopatologia , Distribuição Aleatória , Ratos Sprague-Dawley , Choque Hemorrágico/complicações , Taxa de Sobrevida , Sistema Nervoso Simpático/fisiopatologia , Fator de Necrose Tumoral alfa/sangue
2.
Prostate Cancer Prostatic Dis ; 21(1): 22-36, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29282359

RESUMO

BACKGROUND: With continuous progress over the past few decades in understanding diagnosis, treatment, and genetics, much has been learned about the prostate cancer-diagnosed genome. METHODS: A comprehensive MEDLINE® and Google scholar literature search was conducted using keyword variations relating to the genetics of prostate cancer such as chromosomal alterations, androgen receptor, castration-resistant, inheritance, polymorphisms, oncogenes, metastasis, biomarkers, and immunotherapy. RESULTS: Traditionally, androgen receptors (AR) have been the focus of research. Recently, identification of recurrent chromosomal alterations that lead to either multiplication of regions (gain-of-function) or deletion of regions (loss-of-function) has opened the door to greater genetic accessibility. These chromosomal aberrations lead to variation in copy number and gene expression. Some of these chromosomal alterations are inherited, while others undergo somatic mutations during disease progression. Inherited gene mutations that make one susceptible to prostate cancer have been identified with familial-linked studies. Somatic genes that progress tumorigenesis have also been identified. Research on the molecular biology of prostate cancer has characterized these genes into tumor suppressor genes or oncogenes. Additionally, genome-wide assay studies have identified many high-risk single-nucleotide polymorphisms recurrent throughout the prostate cancer-diagnosed genome. Castration-resistant prostate cancer is the most aggressive form of prostate cancer, and its research has elucidated many types of mutations associated with AR itself, including enhanced expression and amplification, point mutations, and alternative splicing. Understanding the molecular biology of prostate cancer has permitted more accurate identification using advanced biomarkers and therapy for aggressive forms using immunotherapy. CONCLUSIONS: An age-related disease, prostate cancer commands profound attention. With increasing life expectancy and the continuous pursuit of it, prostate cancer is a powerful obstacle best defeated using targeted therapies specifically designed for the unique molecular profile of the malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Mutação , Orquiectomia , Polimorfismo de Nucleotídeo Único/genética , Neoplasias de Próstata Resistentes à Castração/epidemiologia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA