Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(6): e0283822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445695

RESUMO

Despite recent advances in our understanding of pathogenic access to the central nervous system (CNS), the mechanisms by which intracellular pathogens disseminate within the dense cellular network of neural tissue remain poorly understood. To address this issue, longitudinal analysis of Toxoplasma gondii dissemination in the brain was conducted using 2-photon imaging through a cranial window in living mice that transgenically express enhanced green fluorescent protein (eGFP)-claudin-5. Extracellular T. gondii parasites were observed migrating slowly (1.37 ± 1.28 µm/min) and with low displacement within the brain. In contrast, a population of highly motile infected cells transported vacuoles of T. gondii significantly faster (6.30 ± 3.09 µm/min) and with a higher displacement than free parasites. Detailed analysis of microglial dynamics using CX3CR1-GFP mice revealed that T. gondii-infected microglia remained stationary, and infection did not increase the extension/retraction of microglial processes. The role of infiltrating immune cells in shuttling T. gondii was examined by labeling of peripheral hematopoietic cells with anti-CD45 antibody. Infected CD45+ cells were found crawling along the CNS vessel walls and trafficked T. gondii within the brain parenchyma at significantly higher speeds (3.35 ± 1.70 µm/min) than extracellular tachyzoites. Collectively, these findings highlight a dual role for immune cells in neuroprotection and in facilitating parasite dissemination within the brain. IMPORTANCE T. gondii is a foodborne parasite that infects the brain and can cause fatal encephalitis in immunocompromised individuals. However, there is a limited understanding of how the parasites disseminate through the brain and evade immune clearance. We utilized intravital imaging to visualize extracellular T. gondii tachyzoites and infected cells migrating within the infected mouse brain during acute infection. The infection of motile immune cells infiltrating the brain from the periphery significantly increased the dissemination of T. gondii in the brain compared to that of free parasites migrating using their own motility: the speed and displacement of these infected cells would enable them to cover nearly 1 cm of distance per day! Among the infiltrating cells, T. gondii predominantly infected monocytes and CD8+ T cells, indicating that the parasite can hijack immune cells that are critical for controlling the infection in order to enhance their dissemination within the brain.


Assuntos
Toxoplasma , Camundongos , Animais , Toxoplasma/fisiologia , Linfócitos T CD8-Positivos , Encéfalo/patologia , Sistema Nervoso Central , Monócitos
2.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098369

RESUMO

Neurovascular unit and barrier maturation rely on vascular basement membrane (vBM) composition. Laminins, a major vBM component, are crucial for these processes, yet the signaling pathway(s) that regulate their expression remain unknown. Here, we show that mural cells have active Wnt/ß-catenin signaling during central nervous system development in mice. Bulk RNA sequencing and validation using postnatal day 10 and 14 wild-type versus adenomatosis polyposis coli downregulated 1 (Apcdd1-/-) mouse retinas revealed that Lama2 mRNA and protein levels are increased in mutant vasculature with higher Wnt/ß-catenin signaling. Mural cells are the main source of Lama2, and Wnt/ß-catenin activation induces Lama2 expression in mural cells in vitro. Markers of mature astrocytes, including aquaporin 4 (a water channel in astrocyte endfeet) and integrin-α6 (a laminin receptor), are upregulated in Apcdd1-/- retinas with higher Lama2 vBM deposition. Thus, the Wnt/ß-catenin pathway regulates Lama2 expression in mural cells to promote neurovascular unit and barrier maturation.


Assuntos
Via de Sinalização Wnt , beta Catenina , Animais , Camundongos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
3.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904394

RESUMO

Cortical interneurons establish inhibitory microcircuits throughout the neocortex and their dysfunction has been implicated in epilepsy and neuropsychiatric diseases. Developmentally, interneurons migrate from a distal progenitor domain in order to populate the neocortex - a process that occurs at a slower rate in humans than in mice. In this study, we sought to identify factors that regulate the rate of interneuron maturation across the two species. Using embryonic mouse development as a model system, we found that the process of initiating interneuron migration is regulated by blood vessels of the medial ganglionic eminence (MGE), an interneuron progenitor domain. We identified two endothelial cell-derived paracrine factors, SPARC and SerpinE1, that enhance interneuron migration in mouse MGE explants and organotypic cultures. Moreover, pre-treatment of human stem cell-derived interneurons (hSC-interneurons) with SPARC and SerpinE1 prior to transplantation into neonatal mouse cortex enhanced their migration and morphological elaboration in the host cortex. Further, SPARC and SerpinE1-treated hSC-interneurons also exhibited more mature electrophysiological characteristics compared to controls. Overall, our studies suggest a critical role for CNS vasculature in regulating interneuron developmental maturation in both mice and humans.


Assuntos
Movimento Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Eminência Mediana/irrigação sanguínea , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Osteonectina/farmacologia , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Potenciais de Ação , Animais , Córtex Cerebral/embriologia , Córtex Cerebral/cirurgia , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Interneurônios/metabolismo , Interneurônios/transplante , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Eminência Mediana/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Neovascularização Fisiológica , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Osteonectina/metabolismo , Comunicação Parácrina , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33542154

RESUMO

Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood-brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases. However, the precise cellular identity of these induced brain microvascular endothelial cells (iBMECs) has not been well described. Employing a comprehensive transcriptomic metaanalysis of previously published hPSC-derived cells validated by physiological assays, we demonstrate that iBMECs lack functional attributes of ECs since they are deficient in vascular lineage genes while expressing clusters of genes related to the neuroectodermal epithelial lineage (Epi-iBMEC). Overexpression of key endothelial ETS transcription factors (ETV2, ERG, and FLI1) reprograms Epi-iBMECs into authentic endothelial cells that are congruent with bona fide endothelium at both transcriptomic as well as some functional levels. This approach could eventually be used to develop a robust human BBB model in vitro that resembles the human brain EC in vivo for functional studies and drug discovery.


Assuntos
Endotélio Vascular/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Animais , Barreira Hematoencefálica , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Diferenciação Celular , Linhagem Celular , Reprogramação Celular/fisiologia , Endotélio Vascular/fisiologia , Expressão Gênica , Humanos , Camundongos Endogâmicos , Células-Tronco Pluripotentes/fisiologia , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Análise de Célula Única , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
5.
Oncotarget ; 11(23): 2160-2171, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577162

RESUMO

MicroRNAs (miRs) are small non-coding RNAs, that modulate cognate gene expression either by inducing mRNA degradation or by blocking translation, and play crucial and complex roles in tissue homeostasis and during disease initiation and progression. The sprouting of new blood vessels by angiogenesis is critical in vascular development and homeostasis and aberrant angiogenesis is associated with pathological conditions such as ischemia and cancer. We have previously established that miR-151a functions as an onco-miR in non-small cell lung cancer (NSCLC) cells by inducing partial EMT and enhancing tumor growth. Here, we identify anti-miR-151a as a molecule that promotes endothelial cell contacts and barrier properties, suggesting that miR-151a regulates cell-cell junctions. We find that induced miR-151a expression enhances endothelial cell motility and angiogenesis and these functions depend on miR-151a-induced Slug levels. Moreover, we show that miR-151a overexpression enhances tumor-associated angiogenesis in 3D vascularized tumor spheroid assays. Finally, we verify that miR-151a is expressed in the vasculature of normal lung and NSCLC tissue. Our results suggest that miR-151a plays multi-faceted roles in the lung, by regulating multiple functions (cell growth, motility, partial EMT and angiogenesis) in distinct cell types.

6.
PLoS Biol ; 17(3): e2006859, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921319

RESUMO

Brain metastases are prevalent in various types of cancer and are often terminal, given the low efficacy of available therapies. Therefore, preventing them is of utmost clinical relevance, and prophylactic treatments are perhaps the most efficient strategy. Here, we show that systemic prophylactic administration of a toll-like receptor (TLR) 9 agonist, CpG-C, is effective against brain metastases. Acute and chronic systemic administration of CpG-C reduced tumor cell seeding and growth in the brain in three tumor models in mice, including metastasis of human and mouse lung cancer, and spontaneous melanoma-derived brain metastasis. Studying mechanisms underlying the therapeutic effects of CpG-C, we found that in the brain, unlike in the periphery, natural killer (NK) cells and monocytes are not involved in controlling metastasis. Next, we demonstrated that the systemically administered CpG-C is taken up by endothelial cells, astrocytes, and microglia, without affecting blood-brain barrier (BBB) integrity and tumor brain extravasation. In vitro assays pointed to microglia, but not astrocytes, as mediators of CpG- C effects through increased tumor killing and phagocytosis, mediated by direct microglia-tumor contact. In vivo, CpG-C-activated microglia displayed elevated mRNA expression levels of apoptosis-inducing and phagocytosis-related genes. Intravital imaging showed that CpG-C-activated microglia cells contact, kill, and phagocytize tumor cells in the early stages of tumor brain invasion more than nonactivated microglia. Blocking in vivo activation of microglia with minocycline, and depletion of microglia with a colony-stimulating factor 1 inhibitor, indicated that microglia mediate the antitumor effects of CpG-C. Overall, the results suggest prophylactic CpG-C treatment as a new intervention against brain metastasis, through an essential activation of microglia.


Assuntos
Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/metabolismo , Microglia/metabolismo , Microglia/patologia , Oligodesoxirribonucleotídeos/uso terapêutico , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores Estimuladores de Colônias/antagonistas & inibidores , Fatores Estimuladores de Colônias/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/complicações , Melanoma/metabolismo , Camundongos , Minociclina/metabolismo , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30686582

RESUMO

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Assuntos
Circulação Colateral/fisiologia , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Quimiocina CXCL12/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
8.
Cerebrovasc Dis ; 46(1-2): 10-15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29982254

RESUMO

BACKGROUND: Pregnancy is a sex-specific risk factor for causing hemorrhagic stroke (HS) in young adults. Unique physiological characteristics during pregnancy may alter the relative risk for HS in pregnant/postpartum (PP) women compared to HS in other young women. We compared patient characteristics and HS subtypes between young non-pregnant and PP women. METHODS: We reviewed the medical records of all women 18-45 years old admitted to our center with HS from October 15, 2008 through March 31, 2015, and compared patient characteristics and stroke mechanisms using logistic regression. RESULTS: Of the 130 young women with HS during the study period, 111 were non-PP women, and 19 PP women. PP women had lower proportions of vascular risk factors such as hypertension, prior stroke, and smoking, and a higher proportion of migraine (36.8 vs. 14.4%, p = 0.01). After adjusting for hypertension, smoking, migraine, prior stroke and prior myocardial infarction, PP women had lower odds of having an underlying vascular lesion (OR 0.14, 95% CI 0.04-0.44, p = 0.0009) and a higher proportion of the reversible cerebral vasoconstriction syndrome (RCVS) as cause of their HS. CONCLUSIONS: Women with pregnancy-associated HS had fewer cerebrovascular risk factors, lower odds of having -underlying vascular lesions, and higher proportion of -migraine and RCVS compared with similar-aged non--pregnant women. Pregnancy-associated HS appears to represent a unique pathophysiological process, requiring targeted study.


Assuntos
Hemorragias Intracranianas/epidemiologia , Complicações Cardiovasculares na Gravidez/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Adulto , Fatores Etários , Comorbidade , Feminino , Humanos , Hemorragias Intracranianas/diagnóstico , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Gravidez , Complicações Cardiovasculares na Gravidez/diagnóstico , Medição de Risco , Fatores de Risco , Fatores Sexuais , Acidente Vascular Cerebral/diagnóstico , Adulto Jovem
9.
Acta Neuropathol ; 135(3): 311-336, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411111

RESUMO

The adult quiescent blood-brain barrier (BBB), a structure organised by endothelial cells through interactions with pericytes, astrocytes, neurons and microglia in the neurovascular unit, is highly regulated but fragile at the same time. In the past decade, there has been considerable progress in understanding not only the molecular pathways involved in BBB development, but also BBB breakdown in neurological diseases. Specifically, the Wnt/ß-catenin, retinoic acid and sonic hedgehog pathways moved into the focus of BBB research. Moreover, angiopoietin/Tie2 signalling that is linked to angiogenic processes has gained attention in the BBB field. Blood vessels play an essential role in initiation and progression of many diseases, including inflammation outside the central nervous system (CNS). Therefore, the potential influence of CNS blood vessels in neurological diseases associated with BBB alterations or neuroinflammation has become a major focus of current research to understand their contribution to pathogenesis. Moreover, the BBB remains a major obstacle to pharmaceutical intervention in the CNS. The complications may either be expressed by inadequate therapeutic delivery like in brain tumours, or by poor delivery of the drug across the BBB and ineffective bioavailability. In this review, we initially describe the cellular and molecular components that contribute to the steady state of the healthy BBB. We then discuss BBB alterations in ischaemic stroke, primary and metastatic brain tumour, chronic inflammation and Alzheimer's disease. Throughout the review, we highlight common mechanisms of BBB abnormalities among these diseases, in particular the contribution of neuroinflammation to BBB dysfunction and disease progression, and emphasise unique aspects of BBB alteration in certain diseases such as brain tumours. Moreover, this review highlights novel strategies to monitor BBB function by non-invasive imaging techniques focussing on ischaemic stroke, as well as novel ways to modulate BBB permeability and function to promote treatment of brain tumours, inflammation and Alzheimer's disease. In conclusion, a deep understanding of signals that maintain the healthy BBB and promote fluctuations in BBB permeability in disease states will be key to elucidate disease mechanisms and to identify potential targets for diagnostics and therapeutic modulation of the BBB.


Assuntos
Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/patologia , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Humanos
11.
Stem Cells Int ; 2013: 435093, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23997771

RESUMO

Systemically infused mesenchymal stem cells (MSCs) are emerging therapeutics for treating stroke, acute injuries, and inflammatory diseases of the central nervous system (CNS), as well as brain tumors due to their regenerative capacity and ability to secrete trophic, immune modulatory, or other engineered therapeutic factors. It is hypothesized that transplanted MSCs home to and engraft at ischemic and injured sites in the brain in order to exert their therapeutic effects. However, whether MSCs possess the ability to migrate across the blood-brain barrier (BBB) that separates the blood from the brain remains unresolved. This review analyzes recent advances in this area in an attempt to elucidate whether systemically infused MSCs are able to actively transmigrate across the CNS endothelium, particularly under conditions of injury or stroke. Understanding the fate of transplanted MSCs and their CNS trafficking mechanisms will facilitate the development of more effective stem-cell-based therapeutics and drug delivery systems to treat neurological diseases and brain tumors.

12.
Nature ; 464(7291): 1043-7, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20393562

RESUMO

Hereditary hypotrichosis simplex is a rare autosomal dominant form of hair loss characterized by hair follicle miniaturization. Using genetic linkage analysis, we mapped a new locus for the disease to chromosome 18p11.22, and identified a mutation (Leu9Arg) in the adenomatosis polyposis down-regulated 1 (APCDD1) gene in three families. We show that APCDD1 is a membrane-bound glycoprotein that is abundantly expressed in human hair follicles, and can interact in vitro with WNT3A and LRP5-two essential components of Wnt signalling. Functional studies show that APCDD1 inhibits Wnt signalling in a cell-autonomous manner and functions upstream of beta-catenin. Moreover, APCDD1 represses activation of Wnt reporters and target genes, and inhibits the biological effects of Wnt signalling during both the generation of neurons from progenitors in the developing chick nervous system, and axis specification in Xenopus laevis embryos. The mutation Leu9Arg is located in the signal peptide of APCDD1, and perturbs its translational processing from the endoplasmic reticulum to the plasma membrane. APCDD1(L9R) probably functions in a dominant-negative manner to inhibit the stability and membrane localization of the wild-type protein. These findings describe a novel inhibitor of the Wnt signalling pathway with an essential role in human hair growth. As APCDD1 is expressed in a broad repertoire of cell types, our findings indicate that APCDD1 may regulate a diversity of biological processes controlled by Wnt signalling.


Assuntos
Hipotricose/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação Puntual/genética , Proteínas Wnt/antagonistas & inibidores , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Embrião de Galinha , Mapeamento Cromossômico , Cromossomos Humanos Par 18/genética , Genes Dominantes/genética , Genes Reporter/genética , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Hipotricose/metabolismo , Hipotricose/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/deficiência , Proteínas de Membrana , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Couro Cabeludo , Transdução de Sinais , Pele , Medula Espinal/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo , beta Catenina/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(2): 641-6, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19129494

RESUMO

Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood-brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/beta-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/beta-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/beta-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/beta-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/beta-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked.


Assuntos
Sistema Nervoso Central/irrigação sanguínea , Transportador de Glucose Tipo 1/genética , Neovascularização Fisiológica , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Barreira Hematoencefálica/química , Regulação da Expressão Gênica/fisiologia , Ligantes , Camundongos , Neurônios/química , Células-Tronco/química , Proteínas Wnt/análise , beta Catenina/análise
14.
Mol Biol Cell ; 17(12): 5163-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17035633

RESUMO

Wnts are lipid-modified secreted glycoproteins that regulate diverse biological processes. We report that Wnt5a, which functions in noncanonical Wnt signaling, has activity on endothelial cells. Wnt5a is endogenously expressed in human primary endothelial cells and is expressed in murine vasculature at several sites in mouse embryos and tissues. Expression of exogenous Wnt5a in human endothelial cells promoted angiogenesis. Wnt5a induced noncanonical Wnt signaling in endothelial cells, as measured by Dishevelled and ERK1/2 phosphorylation, and inhibition of canonical Wnt signaling, a known property of Wnt5a. Wnt5a induced endothelial cell proliferation and enhanced cell survival under serum-deprived conditions. The Wnt5a-mediated proliferation was blocked by Frizzled-4 extracellular domain. Wnt5a expression enhanced capillary-like network formation, whereas reduction of Wnt5a expression decreased network formation. Reduced Wnt5a expression inhibited endothelial cell migration. Screening for Wnt5a-regulated genes in cultured endothelial cells identified several encoding angiogenic regulators, including matrix metalloproteinase-1, an interstitial collagenase, and Tie-2, a receptor for angiopoietins. Thus, Wnt5a acts through noncanonical Wnt signaling to promote angiogenesis.


Assuntos
Células Endoteliais/citologia , Metaloproteinase 1 da Matriz/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Proteínas Desgrenhadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores Frizzled/genética , Regulação da Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/genética , Camundongos , Análise em Microsséries , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor TIE-2/genética , Proteínas Wnt/genética , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA