Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675367

RESUMO

In recent years, continuous progress has been made in the development of new anticancer drugs, and several compounds (small molecules, engineered antibodies, immunomodulators, etc [...].

2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543102

RESUMO

Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein-protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of disrupting the protein-protein contact and overcoming the limitations presented by mAbs. The disclosure of the first X-ray complexes of PD-L1 with BMS ligands showed the protein in dimeric form, with the ligand in a symmetrical hydrophobic tunnel. These findings paved the way for the discovery of new ligands. To this end, and to understand the binding mechanism of small molecules to PD-L1 along with the dimerization process, many structure-based computational studies have been applied. In the present review, we examined the most relevant articles presenting computational analyses aimed at elucidating the binding mechanism of PD-L1 with PD-1 and small molecule ligands. Additionally, virtual screening studies that identified validated PD-L1 ligands were included. The relevance of the reported studies highlights the increasingly prominent role that these techniques can play in chemical biology and drug discovery.

3.
Future Med Chem ; 15(20): 1865-1883, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37886837

RESUMO

Aim: Development of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit Helicobacter pylori carbonic anhydrase (HpCA) or the antiviral Zidovudine. Methods & materials: Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of H. pylori ATCC 43504 were assessed. Docking studies on α-carbonic anhydrase enzymes and EGFR were conducted to gain insight into the binding mode of these compounds. Results & conclusion: Some compounds proved to be strong inhibitors of HpCA and showed good anti-H. pylori activity. Computational studies on the targeted enzymes shed light on the interaction hotspots.


Assuntos
Anidrases Carbônicas , Helicobacter pylori , Anidrases Carbônicas/metabolismo , Helicobacter pylori/metabolismo , Cloridrato de Erlotinib/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Receptores ErbB/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Anidrase Carbônica IX , Benzenossulfonamidas
4.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431985

RESUMO

The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade , Anidrases Carbônicas/química , Cumarínicos/farmacologia , Cumarínicos/química , Anidrase Carbônica II/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232735

RESUMO

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Neuraminidase , Peptídeos/farmacologia , Peptídeos/uso terapêutico
6.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36015085

RESUMO

The antiproliferative effects played by benzothiazoles in different cancers have aroused the interest for these molecules as promising antitumor agents. In this work, a library of phenylacetamide derivatives containing the benzothiazole nucleus was synthesized and compounds were tested for their antiproliferative activity in paraganglioma and pancreatic cancer cell lines. The novel synthesized compounds induced a marked viability reduction at low micromolar concentrations both in paraganglioma and pancreatic cancer cells. Derivative 4l showed a greater antiproliferative effect and higher selectivity index against cancer cells, as compared to other compounds. Notably, combinations of derivative 4l with gemcitabine at low concentrations induced enhanced and synergistic effects on pancreatic cancer cell viability, thus supporting the relevance of compound 4l in the perspective of clinical translation. A target prediction analysis was also carried out on 4l by using multiple computational tools, identifying cannabinoid receptors and sentrin-specific proteases as putative targets contributing to the observed antiproliferative activity.

7.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803309

RESUMO

The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Terapia de Alvo Molecular/tendências
8.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498946

RESUMO

Matrix Metalloproteinases (MMPs) are a family of secreted and membrane-bound enzymes, of which 24 isoforms are known in humans. These enzymes degrade the proteins of the extracellular matrix and play a role of utmost importance in the physiological remodeling of all tissues. However, certain MMPs, such as MMP-2, -9, and -13, can be overexpressed in pathological states, including cancer and metastasis. Consequently, the development of MMP inhibitors (MMPIs) has been explored for a long time as a strategy to prevent and hinder metastatic growth, but the important side effects linked to promiscuous inhibition of MMPs prevented the clinical use of MMPIs. Therefore, several strategies were proposed to improve the therapeutic profile of this pharmaceutical class, including improved selectivity toward specific MMP isoforms and targeting of specific organs and tissues. Combining both approaches, we conducted the synthesis and preliminary biological evaluation of a series of (2-aminobenzothiazole)-methyl-1,1-bisphosphonic acids active as selective inhibitors of MMP-13 via in vitro and in silico studies, which could prove useful for the treatment of bone metastases thanks to the bone-targeting capabilities granted by the bisphosphonic acid group.

9.
Eur J Med Chem ; 210: 113061, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310289

RESUMO

Matrix metalloproteinases (MMPs) are zinc-dependent hydrolytic enzymes of great biological relevance, and some of them are key to the neuroinflammatory events and the brain damage associated to stroke. Non-zinc binding ligands are an emerging trend in drug discovery programs in this area due to their lower tendency to show off-target effects. 7-Amino-phenanthridin-6-one is disclosed as a new framework able to inhibit matrix metalloproteinases by binding to the distal part of the enzyme S1' site, as shown by computational studies. A kinetic study revealed inhibition to be noncompetitive. Some of the compounds showed some degree of selectivity for the MMP-2 and MMP-9 enzymes, which are crucial for brain damage associated to ischemic stroke. Furthermore, some compounds also had a high neuroprotective activity against oxidative stress, which is also very relevant aspect of ischaemic stroke pathogenesis, both decreasing lipid peroxidation and protecting against the oxidative stress-induced reduction in cell viability. One of the compounds, bearing a 2-thienyl substituent at C-9 and a 4-methoxyphenylamino at C-7, had the best-balanced multitarget profile and was selected as a lead on which to base future structural manipulation.


Assuntos
Descoberta de Drogas , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492898

RESUMO

Matrix metalloproteinases (MMPs) are a family of enzymes involved at different stages of cancer progression and metastasis. We previously identified a novel class of bisphosphonic inhibitors, selective for MMPs crucial for bone remodeling, such as MMP-2. Due to the increasing relevance of specific MMPs at various stages of tumor malignancy, we focused on improving potency towards certain isoforms. Here, we tackled MMP-9 because of its confirmed role in tumor invasion, metastasis, angiogenesis, and immuno-response, making it an ideal target for cancer therapy. Using a computational analysis, we designed and characterized potent MMP-2/MMP-9 inhibitors. This is a promising approach to develop and clinically translate inhibitors that could be used in combination with standard care therapy for the treatment of skeletal malignancies.

11.
J Comput Aided Mol Des ; 34(8): 897-914, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32185582

RESUMO

The programmed cell death protein 1 (PD-1) and its ligand, PD-L1, constitute an important co-inhibitory immune checkpoint leading to downregulation of immune system. Tumor cells developed a strategy to trigger PD-1/PD-L1 pathway reducing the T cell anticancer activity. Anti-PD-L1 small drugs, generally with improved pharmacokinetic and technological profiles than monoclonal antibodies, became an attractive research topic. Nevertheless, still few works have been published on the chemical features of possible binding sites. In this work, we applied a novel computational protocol based on the combination of the ab initio Fragment Molecular Orbital (FMO) method and a newly developed GRID-DRY approach in order to characterize the PD-L1 binding sites, starting from PD-1/PD-L1 and PD-L1/BMS-ligands (Bristol-Mayers Squibb ligands) complexes. The FMO method allows the calculation of the pair-residues as well as the ligand-residues interactions with ab initio accuracy, whereas the GRID-DRY approach is an effective tool to investigate hydrophobic interactions, not easily detectable by ab initio methods. The present GRID-DRY protocol is able to determine the energy contributions of each ligand atoms to each hydrophobic interaction, both qualitatively and quantitatively. We were also able to identify the three specific hot regions involved in PD-1/PD-L1 protein-protein interaction and in PD-L1/BMS-ligand interactions, in agreement with preceding theoretical/experimental results, and to suggest a specific pharmacophore for PD-L1 inhibitors.


Assuntos
Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/química , Modelos Moleculares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inibidores de Checkpoint Imunológico/metabolismo , Ligantes , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo
12.
Bioorg Med Chem ; 28(3): 115257, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874775

RESUMO

Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion. In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1' pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.


Assuntos
Benzimidazóis/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Benzimidazóis/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 158: 184-200, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30216851

RESUMO

Bisphosphonates such as zoledronic, alendronic and risedronic acids are a class of drugs clinically used to prevent bone density loss and osteoporosis. Novel P-C-P bisphosphonates were synthesized for targeting human farnesyl pyrophosphate synthase (hFPPS) and human geranylgeranyl pyrophosphate synthase (hGGPPS), key enzymes of the mevalonate pathway, and capable of anti-proliferative action on a number of cell lines (PC3, MG63, MC3T3, RAW 264.7, J774A.1, bone marrow cells and their co-colture with PC3) involved in bone homeostasis, bone formation and death. Among sixteen compounds, [1-hydroxy-2-(pyrimidin-2-ylamino)ethane-1,1-diyl]bis(phosphonic acid) (10) was effective in reducing PC3 and RAW 264.7 cell number in crystal-violet and cell-dehydrogenase activity assays at 100 µM concentration. 10 reduced differentiated osteoclasts number similarly with zoledronic acid in osteoclastogenesis assay. At nanomolar concentrations, 10 was more effective than zoledronic acid in inducing mineralization in MC3T3 and murine bone marrow cells. Further, 10 significantly inhibited the activity of hFPPS showing an IC50 of 0.31 µM and a remarkable hydroxyapatite binding of 90%. Docking calculations were performed identifying putative interactions between some representative novel bisphosphonates and both hFPPS and hGGPPS. Then, 10 was found to behave similarly or even better than zoledronic acid as a anti-resorptive agent.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Animais , Linhagem Celular , Difosfonatos/síntese química , Inibidores Enzimáticos/síntese química , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Geraniltranstransferase/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Células RAW 264.7
14.
Sci Rep ; 7(1): 10593, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878220

RESUMO

Bovine lactoferrin is a biglobular multifunctional iron binding glycoprotein that plays an important role in innate immunity against infections. We have previously demonstrated that selected peptides from bovine lactoferrin C-lobe are able to prevent both Influenza virus hemagglutination and cell infection. To deeper investigate the ability of lactoferrin derived peptides to inhibit Influenza virus infection, in this study we identified new bovine lactoferrin C-lobe derived sequences and corresponding synthetic peptides were synthesized and assayed to check their ability to prevent viral hemagglutination and infection. We identified three tetrapeptides endowed with broad anti-Influenza activity and able to inhibit viral infection in a concentration range femto- to picomolar. Our data indicate that these peptides may constitute a non-toxic tool for potential applications as anti-Influenza therapeutics.


Assuntos
Antivirais/farmacologia , Lactoferrina/química , Orthomyxoviridae/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antivirais/química , Linhagem Celular , Testes de Hemaglutinação , Hemaglutinação por Vírus/efeitos dos fármacos , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Influenza Humana/virologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Relação Estrutura-Atividade
15.
J Enzyme Inhib Med Chem ; 32(1): 1260-1264, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948845

RESUMO

A series of nanomolar phosphonate matrix metalloproteinase (MPP) inhibitors was tested for inhibitory activity against a panel of selected human carbonic anhydrase (CA, EC 4.2.1.1) isozymes, covering the cancer-associated CA IX and XII. None of the reported sulfonyl and sulfonylamino-derivatives sensitively affected the catalytic activity of the cytosolic isoforms CA I and II, which are considered off-target isoforms in view of their physiological role. The most active inhibitors were in the series of chiral N-(sulfonyl)phosphovaline derivatives, which showed good to excellent inhibitory activity over target CAs, with compound 15 presenting the best isoform-selectivity toward CA IX. We suggest here that the phosphonates have the potential as dual inhibitors of MMPs and CAs, both involved in tumor formation, invasion and metastasis.


Assuntos
Anidrases Carbônicas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Metaloproteinases da Matriz/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/classificação , Ativação Enzimática/efeitos dos fármacos , Humanos , Ácidos Fosforosos/química , Isoformas de Proteínas
16.
ChemMedChem ; 11(17): 1892-8, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27418256

RESUMO

Matrix metalloproteinases (MMPs) are well-established targets for several pathologies. In particular, MMP-2 and MMP-13 play a prominent role in cancer progression. In this study, a structure-based screening campaign was applied to prioritize metalloproteinase-oriented fragments. This computational model was applied to a representative fragment set from the publically available EDASA Scientific compound library. These fragments were prioritized, and the top-ranking hits were tested in a biological assay to validate the model. Two scaffolds showed consistent activity in the assay, and the isatin-based compounds were the most interesting. These latter fragments have significant potential as tools for the design and realization of novel MMP inhibitors. In addition to their micromolar activity, the chemical synthesis affords flexible and creative access to their analogues.


Assuntos
Descoberta de Drogas , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Relação Dose-Resposta a Droga , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Chem Inf Model ; 56(6): 1216-27, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27269808

RESUMO

The p53-MDM2 interaction is a well-known protein-protein contact, and its disruption is a key event for p53 activation and induction of its oncosuppressor response. The design of small molecules that can block the p53-MDM2 interaction and reactivate the p53 function is a promising strategy for cancer therapy. To date, several compounds have been identified as p53-MDM2 inhibitors, and X-ray structures of MDM2 complexed with several ligands are available in the Brookhaven Protein Data Bank. These data have been exploited to compile a hierarchical virtual screening protocol. The first steps were aimed at selecting a focused library, which was submitted in parallel to docking and pharmacophore model alignment. Selected compounds were subjected to inhibition assays of both cellular vitality (MTT) and p53-MDM2 interaction (ELISA and co-immunoprecipitation), disclosing four nanomolar inhibitors.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Proteínas Proto-Oncogênicas c-mdm2/química , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Interface Usuário-Computador
18.
Amino Acids ; 47(1): 153-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331424

RESUMO

Caspase-3 displays a pivotal role as an executioner of apoptosis, hydrolyzing several proteins including the nuclear enzyme poly(ADP-ribose)polymerase (PARP). Ac-Asp-Glu-Val-Asp-H (K i° = 2.3 × 10(-10) M at pH 7.5 and 25.0 °C), designed on the basis of the cleavage site of PARP, has been reported as a highly specific human caspase-3 inhibitor. Here, di- and tri-peptidyl aldehydes 11-13 and 27-29 have been synthesized to overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of the current inhibitors. Compounds 11-13, 27-29 inhibit in vitro human caspase-3 competitively, values of K i° ranging between 6.5 (±0.82) × 10(-9) M and 1.1 (±0.04) × 10(-7) M (at pH 7.4 and 25.0 °C). Moreover, the most effective caspase-3 inhibitor 11 impairs apoptosis in human DLD-1 colon adenocarcinoma cells. Furthermore, the binding mode of 11-13 and 27-29 to human caspase-3 has been investigated in silico. The comparative analysis of human caspase-3 inhibitors indicates that (1) aldehyde 11 is the minimal highly effective inhibitor, (2) the tLeu-Asp sequence is pivotal for satisfactory enzyme inhibition, and (3) the occurrence of the tLeu residue at the inhibitor P2 position is fundamental for enzyme/inhibitor recognition. Moreover, calculations suggest that the tLeu residue reduces the conformational flexibility of the inhibitor that binds to the enzyme with a lower energetic penalty.


Assuntos
Caspase 3/química , Inibidores de Caspase/química , Peptídeos/química , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Inibidores de Caspase/síntese química , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologia
19.
Bioorg Med Chem ; 21(21): 6456-65, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24071448

RESUMO

The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.


Assuntos
Difosfonatos/química , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/química , Animais , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/metabolismo , Difosfonatos/toxicidade , Durapatita/química , Durapatita/metabolismo , Células Hep G2 , Humanos , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/química , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/toxicidade , Metaloproteinases da Matriz/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
ChemMedChem ; 8(9): 1475-82, 1421, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873724

RESUMO

Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in several pathological states. Among them, MMP-2 is a relevant therapeutic target because of its role in cancer development and progression. Many MMP inhibitors (MMPIs) have been discovered over the last 30 years, and the majority of them contain a functional group that binds the zinc ion (zinc-binding group; ZBG). Unfortunately, no MMPIs have reached the market yet, owing to toxic effects due to unselective interactions of the ZBG. The new generation of MMPIs that do not bind the zinc ion could overcome problems of selectivity and toxicity, but have so far been developed only for MMP-8, -12, and -13. In this work, a virtual screening protocol was established by combining ligand- and structure-based methods to identify non-zinc-binding MMP-2 inhibitors using a new-generation MMP-8 inhibitor as a probe to find unexplored interactions in the MMP-2 S1' site. The screening allowed the identification of micromolar MMP-2 inhibitors that putatively avoid binding the zinc ion, as demonstrated by docking calculations. The LIA model, built to correlate predicted and experimental binding energies of the identified non-zinc-binding MMP-2 hits, underpins the reliability of the predicted docking poses.


Assuntos
Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Sítios de Ligação , Desenho de Fármacos , Cinética , Ligantes , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Termodinâmica , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA