Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
2.
Sci Transl Med ; 14(675): eabq6364, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516269

RESUMO

Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Pan troglodytes , Primatas , Adenoviridae , Doença do Vírus de Marburg/prevenção & controle
3.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35413016

RESUMO

A major challenge in managing acute viral infections is ameliorating disease when treatment is delayed. Previously, we reported the success of a 2-pronged mAb and antiviral remdesivir therapeutic approach to treat advanced illness in rhesus monkeys infected with Marburg virus (MARV). Here, we explored the benefit of a similar combination therapy for Sudan ebolavirus (Sudan virus; SUDV) infection. Importantly, no licensed anti-SUDV therapeutics currently exist, and infection of rhesus macaques with SUDV results in a rapid disease course similar to MARV with a mean time to death of 8.3 days. When initiation of therapy with either remdesivir or a pan-ebolavirus mAb cocktail (MBP431) was delayed until 6 days after inoculation, only 20% of macaques survived. In contrast, when remdesivir and MBP431 treatment were combined beginning 6 days after inoculation, significant protection (80%) was achieved. Our results suggest that combination therapy may be a viable treatment for patients with advanced filovirus disease that warrants further clinical testing in future outbreaks.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Viroses , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Macaca mulatta
4.
Nat Commun ; 12(1): 1891, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767178

RESUMO

Monoclonal antibodies (mAbs) and remdesivir, a small-molecule antiviral, are promising monotherapies for many viruses, including members of the genera Marburgvirus and Ebolavirus (family Filoviridae), and more recently, SARS-CoV-2. One of the major challenges of acute viral infections is the treatment of advanced disease. Thus, extending the window of therapeutic intervention is critical. Here, we explore the benefit of combination therapy with a mAb and remdesivir in a non-human primate model of Marburg virus (MARV) disease. While rhesus monkeys are protected against lethal infection when treatment with either a human mAb (MR186-YTE; 100%), or remdesivir (80%), is initiated 5 days post-inoculation (dpi) with MARV, no animals survive when either treatment is initiated alone beginning 6 dpi. However, by combining MR186-YTE with remdesivir beginning 6 dpi, significant protection (80%) is achieved, thereby extending the therapeutic window. These results suggest value in exploring combination therapy in patients presenting with advanced filovirus disease.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Macaca mulatta , Doença do Vírus de Marburg/prevenção & controle , Carga Viral/efeitos dos fármacos
5.
Virol J ; 17(1): 125, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811514

RESUMO

We recently reported the development of the first African green monkey (AGM) model for COVID-19 based on a combined liquid intranasal (i.n.) and intratracheal (i.t.) exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n. particle only route of exposure using the LMA mucosal atomization device (MAD). Six AGMs were infected with SARS-CoV-2; three animals were euthanized near the peak stage of virus replication (day 5) and three animals were euthanized during the early convalescence period (day 34). All six AGMs supported robust SARS-CoV-2 replication and developed respiratory disease. Evidence of coagulation dysfunction as noted by a transient increases in aPTT and circulating levels of fibrinogen was observed in all AGMs. The level of SARS-CoV-2 replication and lung pathology was not quite as pronounced as previously reported with AGMs exposed by the combined i.n. and i.t. routes; however, SARS-CoV-2 RNA was detected in nasal swabs of some animals as late as day 15 and rectal swabs as late as day 28 after virus challenge. Of particular importance to this study, all three AGMs that were followed until the early convalescence stage of COVID-19 showed substantial lung pathology at necropsy as evidenced by multifocal chronic interstitial pneumonia and increased collagen deposition in alveolar walls despite the absence of detectable SARS-CoV-2 in any of the lungs of these animals. These findings are consistent with human COVID-19 further demonstrating that the AGM faithfully reproduces the human condition.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Animais , Betacoronavirus/imunologia , COVID-19 , Chlorocebus aethiops , Convalescença , Infecções por Coronavirus/sangue , Modelos Animais de Doenças , Feminino , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Mucosa Nasal/virologia , Pandemias , Pneumonia Viral/sangue , SARS-CoV-2 , Soroconversão , Carga Viral , Eliminação de Partículas Virais
6.
Sci Rep ; 10(1): 3071, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080323

RESUMO

Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.


Assuntos
Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/virologia , Marburgvirus/imunologia , Profilaxia Pós-Exposição , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Citocinas/sangue , Citotoxicidade Imunológica , Relação Dose-Resposta Imunológica , Regulação para Baixo/genética , Feminino , Inflamação/sangue , Inflamação/imunologia , Interferons/genética , Interferons/metabolismo , Células Matadoras Naturais/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Doença do Vírus de Marburg/sangue , Doença do Vírus de Marburg/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Células Th2/imunologia , Transcriptoma/genética , Regulação para Cima/genética , Vesiculovirus/genética , Carga Viral/imunologia
7.
J Infect Dis ; 221(Suppl 4): S471-S479, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686101

RESUMO

BACKGROUND: Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses that cause severe disease in both animals and humans. There are no approved vaccines or treatments for use in humans; however, therapeutic treatment of both NiV and HeV infection in ferrets and non-human primates with a cross-reactive, neutralizing human monoclonal antibody (mAb), m102.4, targeting the G glycoprotein has been demonstrated. In a previous study, we isolated, characterized, and humanized a cross-reactive, neutralizing anti-F mAb (h5B3.1). The mAb h5B3.1 blocks the required F conformational change needed to facilitate membrane fusion and virus infection, and the epitope recognized by h5B3.1 has been structurally defined; however, the efficacy of h5B3.1 in vivo is unknown. METHODS: The post-infection antiviral activity of h5B3.1 was evaluated in vivo by administration in ferrets after NiV and HeV virus challenge. RESULTS: All subjects that received h5B3.1 from 1 to several days after infection with a high-dose, oral-nasal virus challenge were protected from disease, whereas all controls died. CONCLUSIONS: This is the first successful post-exposure antibody therapy for NiV and HeV using a humanized cross-reactive mAb targeting the F glycoprotein, and the findings suggest that a combination therapy targeting both F and G should be evaluated as a therapy for NiV/HeV infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vírus Hendra , Infecções por Henipavirus/terapia , Vírus Nipah , Proteínas Virais de Fusão/imunologia , Animais , Reações Cruzadas , Furões , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos
8.
Sci Rep ; 9(1): 16710, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723221

RESUMO

Nipah virus (NiV) is a pathogenic paramyxovirus and zoononis with very high human fatality rates. Previous protein over-expression studies have shown that various mutations to the common N-terminal STAT1-binding motif of the NiV P, V, and W proteins affected the STAT1-binding ability of these proteins thus interfering with he JAK/STAT pathway and reducing their ability to inhibit type-I IFN signaling, but due to differing techniques it was unclear which amino acids were most important in this interaction or what impact this had on pathogenesis in vivo. We compared all previously described mutations in parallel and found the amino acid mutation Y116E demonstrated the greatest reduction in binding to STAT1 and the greatest reduction in interferon antagonism. A similar reduction in binding and activity was seen for a deletion of twenty amino acids constituting the described STAT1-binding domain. To investigate the contribution of this STAT1-binding motif in NiV-mediated disease, we produced rNiVs with complete deletion of the STAT1-binding motif or the Y116E mutation for ferret challenge studies (rNiVM-STAT1blind). Despite the reduced IFN inhibitory function, ferrets challenged with these rNiVM-STAT1blind mutants had a lethal, albeit altered, NiV-mediated disease course. These data, together with our previously published data, suggest that the major role of NiV P, V, and W in NiV-mediated disease in the ferret model are likely to be in the inhibition of viral recognition/innate immune signaling induction with a minor role for inhibition of IFN signaling.


Assuntos
Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , Fosfoproteínas/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Modelos Animais de Doenças , Progressão da Doença , Feminino , Furões , Infecções por Henipavirus/metabolismo , Fosfoproteínas/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
9.
Sci Transl Med ; 9(384)2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381540

RESUMO

As observed during the 2013-2016 Ebola virus disease epidemic, containment of filovirus outbreaks is challenging and made more difficult by the lack of approved vaccine or therapeutic options. Marburg and Ravn viruses are highly virulent and cause severe and frequently lethal disease in humans. Monoclonal antibodies (mAbs) are a platform technology in wide use for autoimmune and oncology indications. Previously, we described human mAbs that can protect mice from lethal challenge with Marburg virus. We demonstrate that one of these mAbs, MR191-N, can confer a survival benefit of up to 100% to Marburg or Ravn virus-infected rhesus macaques when treatment is initiated up to 5 days post-inoculation. These findings extend the small but growing body of evidence that mAbs can impart therapeutic benefit during advanced stages of disease with highly virulent viruses and could be useful in epidemic settings.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Infecções por Filoviridae/tratamento farmacológico , Filoviridae/fisiologia , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/fisiologia , Animais , Proteção Cruzada , Infecções por Filoviridae/virologia , Cobaias , Humanos , Macaca fascicularis , Macaca mulatta , Doença do Vírus de Marburg/virologia , Projetos Piloto
10.
Nat Microbiol ; 1(10): 16142, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27670117

RESUMO

Although significant progress has been made in developing therapeutics against Zaire ebolavirus, these therapies do not protect against other Ebola species such as Sudan ebolavirus (SUDV). Here, we describe an RNA interference therapeutic comprising siRNA targeting the SUDV VP35 gene encapsulated in lipid nanoparticle (LNP) technology with increased potency beyond formulations used in TKM-Ebola clinical trials. Twenty-five rhesus monkeys were challenged with a lethal dose of SUDV. Twenty animals received siRNA-LNP beginning at 1, 2, 3, 4 or 5 days post-challenge. VP35-targeting siRNA-LNP treatment resulted in up to 100% survival, even when initiated when fever, viraemia and disease signs were evident. Treatment effectively controlled viral replication, mediating up to 4 log10 reductions after dosing. Mirroring clinical findings, a correlation between high viral loads and fatal outcome was observed, emphasizing the importance of stratifying efficacy according to viral load. In summary, strong survival benefit and rapid control of SUDV replication by VP35-targeting LNP confirm its therapeutic potential in combatting this lethal disease.


Assuntos
Doença pelo Vírus Ebola/terapia , Lipídeos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Composição de Medicamentos , Ebolavirus/isolamento & purificação , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Células Hep G2 , Humanos , Macaca mulatta , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/genética , Sudão , Carga Viral/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Viremia/terapia , Replicação Viral
11.
Nat Commun ; 6: 7483, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105519

RESUMO

The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course.


Assuntos
Quimiocinas/imunologia , Infecções por Henipavirus/imunologia , Imunidade Inata/imunologia , Vírus Nipah/imunologia , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Western Blotting , Linhagem Celular , Cricetinae , Citocinas/imunologia , Progressão da Doença , Células Endoteliais/imunologia , Células Endoteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Furões , Infecções por Henipavirus/virologia , Humanos , Técnicas In Vitro , Carga Viral
12.
J Virol ; 88(9): 4624-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522928

RESUMO

UNLABELLED: Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. IMPORTANCE: A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.


Assuntos
Vírus Hendra/imunologia , Infecções por Henipavirus/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Vírus Hendra/genética , Infecções por Henipavirus/patologia , Oligodesoxirribonucleotídeos/administração & dosagem , Análise de Sobrevida , Vacinação/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA