Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(43): 3236-3252, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665609

RESUMO

The summarized amalgam of internal relaxation modulations and external forces like pH, temperature, and solvent conditions determine the protein structure, stability, and function. In a free-energy landscape, although conformers are arranged in vertical hierarchy, there exist several adjacent parallel sets with conformers occupying equivalent energy cleft. Such conformational states are pre-requisites for the functioning of proteins that have oscillating environmental conditions. As these conformational changes have utterly small re-arrangements, nuclear magnetic resonance (NMR) spectroscopy is unique in elucidating the structure-dynamics-stability-function relationships for such conformations. Helicobacter pylori survives and causes gastric cancer at extremely low pH also. However, least is known as to how the genome of the pathogen is protected from reactive oxygen species (ROS) scavenging in the gut at low pH under acidic stress. In the current study, biophysical characteristics of H. pylori DNA binding protein (Hup) have been elucidated at pH 2 using a combination of circular dichroism, fluorescence, NMR spectroscopy, and molecular dynamics simulations. Interestingly, the protein was found to have conserved structural features, differential backbone dynamics, enhanced stability, and DNA binding ability at low pH as well. In summary, the study suggests the partaking of Hup protein even at low pH in DNA protection for maintaining the genome integrity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Transporte/metabolismo , Dicroísmo Circular/métodos , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Entropia , Fluorescência , Helicobacter pylori/patogenicidade , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Simulação de Dinâmica Molecular , Espécies Reativas de Oxigênio/metabolismo , Solventes/química , Temperatura
2.
ACS Omega ; 6(5): 3548-3570, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585739

RESUMO

Helicobacter pylori (H. pylori)-a human gastric pathogen-forms a major risk factor for the development of various gastric pathologies such as chronic inflammatory gastritis, peptic ulcer, lymphomas of mucosa-associated lymphoid tissues, and gastric carcinoma. The complete eradication of infection is the primary objective of treating any H. pylori-associated gastric condition. However, declining eradication efficiencies, off-target effects, and patient noncompliance to prolong and broad-spectrum antibiotic treatments has spurred the clinical interest to search for alternative effective and safer therapeutic options. As natural compounds are safe and privileged with high levels of antibacterial-activity, previous studies have tested and reported a plethora of such compounds with potential in vitro/in vivo anti-H. pylori activity. However, the mode of action of majority of these natural compounds is unclear. The present study has been envisaged to compile the information of various such natural compounds and to evaluate their binding with histone-like DNA-binding proteins of H. pylori (referred here as Hup) using in silico molecular docking-based virtual screening experiments. Hup-being a major nucleoid-associated protein expressed by H. pylori-plays a strategic role in its survival and persistent colonization under hostile stress conditions. The ligand with highest binding energy with Hup-that is, epigallocatechin-(-)gallate (EGCG)-was rationally selected for further computational and experimental testing. The best docking poses of EGCG with Hup were first evaluated for their solution stability using long run molecular dynamics simulations and then using fluorescence and nuclear magnetic resonance titration experiments which demonstrated that the binding of EGCG with Hup is fairly strong (the resultant apparent dissociation constant (k D) values were equal to 2.61 and 3.29 ± 0.42 µM, respectively).

3.
Int J Biol Macromol ; 107(Pt A): 575-584, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28928065

RESUMO

CXCL3 is a neutrophil activating chemokine that belongs to GRO subfamily of CXC chemokines. GRO chemokine family comprises of three chemokines GRO α (CXCL1), GROß (CXCL2), and GRO γ (CXCL3), which arose as a result of gene duplication events during the course of chemokine evolution. Although primary sequences of GRO chemokines are highly similar, they performs several protein specific functions in addition to their common property of neutrophil trafficking. However, the molecular basis for their differential functions has not well understood. Although structural details are available for CXCL1 and CXCL2, no such information regarding CXCL3 is available till date. In the present study, we have successfully cloned, expressed, and purified the recombinant CXCL3. Around 15mg/L of pure recombinant CXCL3 protein was obtained. Further, we investigated its functional divergence and biophysical characteristics such as oligomerization, thermal stability and heparin binding etc., and compared all these features with its closest paralog CXCL2. Our studies revealed that, although overall structural and oligomerization features of CXCL3 and CXCL2 are similar, prominent differences were observed in their surface characteristics, thus implicating for a functional divergence.


Assuntos
Quimiocina CXCL1/química , Quimiocina CXCL2/química , Quimiocinas CXC/química , Clonagem Molecular/métodos , Heparina/química , Sequência de Aminoácidos , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heparina/metabolismo , Humanos , Camundongos , Modelos Moleculares , Primatas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Roedores , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Mol Biol Rep ; 43(5): 349-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27038170

RESUMO

Overexpression of domains of a human protein using recombinant DNA technology has been challenging because individual domains intend to accumulate as non-soluble aggregate when expressed separately. Studies on identifying right sequences for a domain to be able to fold independently may help understand the folding pattern and underlying protein-engineering events to isolate the functional domains of a protein. In this report, individual domains of prostate cancer related biomarkers; MSMB and PSA were overexpressed in bacterial system and purified in their folded forms using affinity chromatography. The western blotting experiment using domain specific antibodies further confirmed these proteins. The designed nucleotide sequences domains were truncated using fold index software and folding were predicted by phyre2 and I-TASSER software. Other parameters were optimized for their overexpression and purification using Co-NTA affinity chromatography. Purified domains of each protein showed secondary structures such as α + ß type for PSA, α/ß and ß type for the each domains of PSA and MSMB respectively. This is the first report on producing PSA and MSMB individual domains in functional folded forms. This study may help produce the folded domain of many such proteins to be used for better diagnostic purpose.


Assuntos
Antígeno Prostático Específico/isolamento & purificação , Neoplasias da Próstata/química , Proteínas Secretadas pela Próstata/isolamento & purificação , Dobramento de Proteína , Western Blotting , Clonagem Molecular , Escherichia coli/genética , Humanos , Masculino , Antígeno Prostático Específico/química , Antígeno Prostático Específico/genética , Proteínas Secretadas pela Próstata/química , Proteínas Secretadas pela Próstata/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA