Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 24: 77-86, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35024435

RESUMO

To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and ß pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models.

2.
Mol Ther Methods Clin Dev ; 19: 250-260, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33102617

RESUMO

In the current adoptive T cell therapy, T cells from a patient are given back to that patient after ex vivo activation, expansion, or genetic manipulation. However, such strategy depends on the quality of the patient's T cells, sometimes leading to treatment failure. It would therefore be ideal to use allogeneic T cells as "off-the-shelf" T cells. To this aim, we have been developing a strategy where potent tumor-antigen-specific cytotoxic T lymphocytes (CTLs) are regenerated from T-cell-derived induced pluripotent stem cells (T-iPSCs). However, certain issues still remain that make it difficult to establish highly potent T-iPSCs: poor reprogramming efficiency of T cells into iPSCs and high variability in the differentiation capability of each T-iPSC clone. To expand the versatility of this approach, we thought of a method to produce iPSCs equivalent to T-iPSCs, namely, iPSCs transduced with exogenous T cell receptor (TCR) genes (TCR-iPSCs). To test this idea, we first cloned TCR genes from WT1-specific CTLs regenerated from T-iPSCs and then established WT1-TCR-iPSCs. We show that the regenerated CTLs from TCR-iPSCs exerted cytotoxic activity comparable to those from T-iPSCs against WT1 peptide-loaded cell line in in vitro model. These results collectively demonstrate the feasibility of the TCR-iPSC strategy.

3.
Sci Rep ; 10(1): 8414, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439888

RESUMO

Immunotherapy has emerged as a promising and effective treatment for cancer, yet the clinical benefit is still variable, in part due to insufficient accumulation of immune effector cells in the tumour microenvironment. Better understanding of tumour-infiltrating lymphocytes (TILs) from nonhuman primate tumours could provide insights into improving effector cell accumulation in tumour tissues during immunotherapy. Here, we characterize TILs in a cynomolgus macaque tumour model in which the tumours were infiltrated with CD4+ and CD8+ T cells and were eventually rejected. The majority of CD4+ and CD8+ TILs exhibited a CD45RA-CCR7- effector memory phenotype, but unlike circulating T cells, they expressed CD69, a marker for tissue-resident memory T (TRM) cells. CD69-expressing CD8+ TILs expressed high levels of the cytotoxic molecule granzyme B and the co-inhibitory receptor PD-1. Consistent with the TRM cell phenotype, CD8+ TILs minimally expressed CX3CR1 but expressed CXCR3 at higher levels than circulating CD8+ T cells. Meanwhile, CXCL9, CXCL10 and CXCL11, chemokine ligands for CXCR3, were expressed at high levels in the tumours, thus attracting CXCR3+CD8+ T cells. These results indicate that tumour-transplanted macaques can be a useful preclinical model for studying and optimizing T cell accumulation in tumours for the development of new immunotherapies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/transplante , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Lectinas Tipo C/metabolismo , Linfócitos do Interstício Tumoral/transplante , Macaca fascicularis , Modelos Animais , Neoplasias/terapia , Receptores CXCR3/metabolismo
4.
iScience ; 23(4): 100998, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32259478

RESUMO

Current adoptive T cell therapies conducted in an autologous setting are costly, time consuming, and depend on the quality of the patient's T cells. To address these issues, we developed a strategy in which cytotoxic T lymphocytes (CTLs) are regenerated from iPSCs that were originally derived from T cells and succeeded in regenerating CTLs specific for the WT1 antigen, which exhibited therapeutic efficacy in a xenograft model of leukemia. In this study, we extended our strategy to solid tumors. The regenerated WT1-specific CTLs had a strong therapeutic effect in orthotopic xenograft model using a renal cell carcinoma (RCC) cell line. To make our method more generally applicable, we developed an allogeneic approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific TCR α/ß genes that had been tested clinically. The regenerated CTLs antigen-specifically suppressed tumor growth in a patient-derived xenograft model of RCC, demonstrating the feasibility of our strategy against solid tumors.

5.
Biochem Biophys Res Commun ; 526(1): 128-134, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32199616

RESUMO

Androgen receptor (AR)-negative castration-resistant prostate cancer (CRPC) is highly aggressive and is resistant to most of the current therapies. Bromodomain and extra terminal domain (BET) protein BRD4 binds to super-enhancers (SEs) that drive high expression of oncogenes in many cancers. A BET inhibitor, JQ1, has been found to suppress the malignant phenotypes of prostate cancer cells, however, the target genes of JQ1 remain largely unknown. Here we show that SE-associated genes specific for AR-negative CRPC PC3 cells include genes involved in migration and invasion, and that JQ1 impairs migration and invasion of PC3 cells. We identified a long non-coding RNA, MANCR, which was markedly down-regulated by JQ1, and found that BRD4 binds to the MANCR locus. MANCR knockdown led to a significant decrease in migration and invasion of PC3 cells. Furthermore, RNA sequencing analysis revealed that expression of the genes involved in migration and invasion was altered by MANCR knockdown. In summary, our data demonstrate that MANCR plays a critical role in migration and invasion of PC3 cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA não Traduzido/metabolismo , Fatores de Transcrição/metabolismo , Azepinas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Invasividade Neoplásica , Neoplasias da Próstata/genética , RNA não Traduzido/genética , Triazóis/farmacologia
6.
Genes Dev ; 32(2): 112-126, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29440259

RESUMO

Stem cell fate is orchestrated by core transcription factors (TFs) and epigenetic modifications. Although regulatory genes that control cell type specification are identified, the transcriptional circuit and the cross-talk among regulatory factors during cell fate decisions remain poorly understood. To identify the "time-lapse" TF networks during B-lineage commitment, we used multipotent progenitors harboring a tamoxifen-inducible form of Id3, an in vitro system in which virtually all cells became B cells within 6 d by simply withdrawing 4-hydroxytamoxifen (4-OHT). Transcriptome and epigenome analysis at multiple time points revealed that ∼10%-30% of differentially expressed genes were virtually controlled by the core TFs, including E2A, EBF1, and PAX5. Strikingly, we found unexpected transcriptional priming before the onset of the key TF program. Inhibition of the immediate early genes such as Nr4a2, Klf4, and Egr1 severely impaired the generation of B cells. Integration of multiple data sets, including transcriptome, protein interactome, and epigenome profiles, identified three representative transcriptional circuits. Single-cell RNA sequencing (RNA-seq) analysis of lymphoid progenitors in bone marrow strongly supported the three-step TF network model during specification of multipotent progenitors toward B-cell lineage in vivo. Thus, our findings will provide a blueprint for studying the normal and neoplastic development of B lymphocytes.


Assuntos
Linfócitos B/metabolismo , Células-Tronco Multipotentes/metabolismo , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem da Célula/genética , Células Cultivadas , Epigênese Genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Código das Histonas , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX5/fisiologia , Análise de Célula Única , Transativadores/fisiologia , Transcriptoma
7.
Genes Dev ; 30(22): 2475-2485, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913604

RESUMO

In general, cell fate is determined primarily by transcription factors, followed by epigenetic mechanisms fixing the status. While the importance of transcription factors controlling cell fate has been well characterized, epigenetic regulation of cell fate maintenance remains to be elucidated. Here we provide an obvious fate conversion case, in which the inactivation of polycomb-medicated epigenetic regulation results in conversion of T-lineage progenitors to the B-cell fate. In T-cell-specific Ring1A/B-deficient mice, T-cell development was severely blocked at an immature stage. We found that these developmentally arrested T-cell precursors gave rise to functional B cells upon transfer to immunodeficient mice. We further demonstrated that the arrest was almost completely canceled by additional deletion of Pax5 These results indicate that the maintenance of T-cell fate critically requires epigenetic suppression of the B-lineage gene program.


Assuntos
Linfócitos B/citologia , Transformação Celular Neoplásica/genética , Epigênese Genética/genética , Inativação Gênica , Proteínas do Grupo Polycomb/metabolismo , Linfócitos T/citologia , Animais , Linhagem da Célula , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Complexo Repressor Polycomb 1/genética , Regiões Promotoras Genéticas/genética , Ubiquitina-Proteína Ligases/genética
8.
Stem Cell Reports ; 5(5): 716-727, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607950

RESUMO

Self-renewal potential and multipotency are hallmarks of a stem cell. It is generally accepted that acquisition of such stemness requires rejuvenation of somatic cells through reprogramming of their genetic and epigenetic status.We show here that a simple block of cell differentiation is sufficient to induce and maintain stem cells. By overexpression of the transcriptional inhibitor ID3 in murine hematopoietic progenitor cells and cultivation under B cell induction conditions, the cells undergo developmental arrest and enter a self-renewal cycle. These cells can be maintained in vitro almost indefinitely, and the long-term cultured cells exhibit robust multi-lineage reconstitution when transferred into irradiated mice. These cells can be cloned and re-expanded with 50% plating efficiency, indicating that virtually all cells are self-renewing. Equivalent progenitors were produced from human cord blood stem cells, and these will ultimately be useful as a source of cells for immune cell therapy.


Assuntos
Pontos de Checagem do Ciclo Celular , Células-Tronco Hematopoéticas/citologia , Leucócitos/citologia , Animais , Linhagem da Célula , Células Cultivadas , Sangue Fetal/citologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Genes Dev ; 29(4): 409-25, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691468

RESUMO

It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naïve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. We found that Id2 and Id3 induced Foxo1 and Foxp1 expression to antagonize the activation of a TFH transcription signature. We show that Id2 and Id3 acted upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module to control cellular expansion. We found that mice depleted for Id2 and Id3 expression developed colitis and αß T-cell lymphomas. Lymphomas depleted for Id2 and Id3 expression displayed elevated levels of c-myc, whereas p19Arf abundance declined. Transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. We propose that, in response to antigen receptor and/or cytokine signaling, the E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to control cellular expansion and homeostatic proliferation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Proteínas Inibidoras de Diferenciação/metabolismo , Linfoma/fisiopatologia , Linfócitos T Auxiliares-Indutores/citologia , Timócitos/citologia , Animais , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Tecido Linfoide/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT1 , Serina-Treonina Quinases TOR/metabolismo
10.
Sci Rep ; 5: 7978, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613394

RESUMO

The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10. Inhibition of the Rap1 prenylation with a geranylgeranyl transferase inhibitor abrogated its membrane-anchoring to Golgi-network and caused reduced proprotein convertase activity required for Adam10 maturation. Exogenous expression of a mature form of Adam10 overcame the Sipa1-induced inhibition of T-ALL cell proliferation. T-ALL cell lines expressed Notch ligands in a Notch-signal dependent manner, which contributed to the cell-autonomous Notch activation. Although the initial thymic blast cells barely expressed Notch ligands during the T-ALL development from Rap(high) hematopoietic progenitors in vivo, the ligands were clearly expressed in the T-ALL cells invading extrathymic vital organs. These results reveal a crucial role of the Rap signal in the Notch-dependent T-ALL development and the progression.


Assuntos
Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Ativadoras de GTPase/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores Notch/genética , Proteínas rap1 de Ligação ao GTP/genética
11.
J Immunol ; 189(9): 4426-36, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23018457

RESUMO

After receiving a TCR-mediated differentiation signal, CD4 and CD8 double-positive thymocytes diverge into CD4 or CD8 single-positive T cells, for which Th-POK and Runx3 have been identified as pivotal transcription factors, respectively. The cross-antagonistic regulation of Th-POK and Runx3 seems to be essential for CD4/8 thymocyte lineage commitment. However, the process for determining which pivotal factor acts dominantly has not been established. To explore the determining process, we used an in vitro culture system in which CD4 or CD8 single-positive cells are selectively induced from CD4/8 double-positive cells. Surprisingly, we found that control of G(1) cell cycle phase progression is critical for the determination. In the CD4 pathway, sustained TCR signal, as well as Th-POK, induces G(1)-phase extension and represses CD8 expression in a G(1) extension-dependent manner. In the CD8 pathway, after receiving a transient TCR signal, the IL-7R signal, as well as Runx3, antagonizes TCR signal-mediated G(1) extension and CD8 repression. Importantly, forced G(1) extension cancels the functions of Runx3 to repress Th-POK and CD4 and to reactivate CD8. In contrast, it is suggested that forced G(1) progression inhibits Th-POK function to repress CD8. Collectively, Th-POK and Runx3 are reciprocally involved in the control of G(1)-phase progression, on which they exert their functions dependently. These findings may provide novel insight into how CD4/CD8 cell lineages are determined by Th-POK and Runx3.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Fase G1/imunologia , Fatores de Transcrição/fisiologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Células Tumorais Cultivadas
12.
Blood ; 119(13): 3123-7, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22337716

RESUMO

Activation-induced cytidine deaminase (AID) is essential for class switch recombination and somatic hypermutation. Its deregulated expression acts as a genomic mutator that can contribute to the development of various malignancies. During treatment with imatinib mesylate (IM), patients with chronic myeloid leukemia often develop hypogammaglobulinemia, the mechanism of which has not yet been clarified. Here, we provide evidence that class switch recombination on B-cell activation is apparently inhibited by IM through down-regulation of AID. Furthermore, expression of E2A, a key transcription factor for AID induction, was markedly suppressed by IM. These results elucidate not only the underlying mechanism of IM-induced hypogammaglobulinemia but also its potential efficacy as an AID suppressor.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Switching de Imunoglobulina/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Animais , Benzamidas , Citidina Desaminase/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Avaliação Pré-Clínica de Medicamentos , Mesilato de Imatinib , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/imunologia , Ovinos , Hipermutação Somática de Imunoglobulina/efeitos dos fármacos , Resultado do Tratamento
13.
Nat Immunol ; 12(10): 992-1001, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857655

RESUMO

It is established that the transcription factor E2A and its antagonist Id3 modulate the checkpoints consisting of the precursor to the T cell antigen receptor (pre-TCR) and the TCR. Here we demonstrate that Id3 expression was higher beyond the pre-TCR checkpoint, remained high in naive T cells and showed a bimodal pattern in the effector-memory population. We show how E2A promoted T lineage specification and how pre-TCR-mediated signaling affected E2A genome-wide occupancy. Thymi in Id3-deficient mice had aberrant development of effector-memory cells, higher expression of the chemokine receptor CXCR5 and the transcriptional repressor Bcl-6 and, unexpectedly, T cell-B cell conjugates and B cell follicles. Collectively, our data show how E2A acted globally to orchestrate development into the T lineage and that Id3 antagonized E2A activity beyond the pre-TCR checkpoint to enforce the naive fate of T cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas Inibidoras de Diferenciação/fisiologia , Linfócitos T/imunologia , Animais , Memória Imunológica , Imunofenotipagem , Antígenos Comuns de Leucócito/análise , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores CXCR5/análise , Baço/imunologia , Timo/imunologia
14.
J Immunol ; 177(11): 7858-67, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17114457

RESUMO

Autoimmunity is often accompanied by the development of ectopic lymphoid tissues in the target organ, and these tissues have been believed to have close relevance to the severity of the disease. However, the true relationship between the extent of such lymphoid structures and the intensity or type of immune responses mediated by self-reactive T cells has remained unclear. In the present study, we generated transgenic mice expressing TCR from an autoimmune gastritis (AIG)-inducing Th1 cell clone specific for one of the major stomach self-Ags, H(+)/K(+)-ATPase alpha subunit. The transgenic mice spontaneously develop massive lymphoid neogenesis with a highly organized tissue structure in the gastric mucosa, demonstrating Ag-specific, T cell-mediated induction of the lymphoid tissues. Nevertheless, the damage of surrounding tissue and autoantibody production were considerably limited compared with those in typical AIG induced by neonatal thymectomy. Such a moderate pathology is likely due to the locally restricted activation and Th2 skewing of self-reactive T cells, as well as the accumulation of naturally occurring regulatory T cells in the target organ. Altogether, the findings suggest that lymphoid neogenesis in chronic autoimmunity does not simply correlate with the destructive response; rather, the overall activation status of the T cell network, i.e., the balance of self-reactivity and tolerance, in the local environment has an impact.


Assuntos
Autoimunidade , Coristoma , Mucosa Gástrica/imunologia , ATPase Trocadora de Hidrogênio-Potássio/imunologia , Tolerância Imunológica , Tecido Linfoide , Transferência Adotiva , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes , Citometria de Fluxo , Mucosa Gástrica/patologia , Gastrite/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Gastropatias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA