Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Virol ; 97(7): e0177222, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310260

RESUMO

Adeno-associated virus (AAV) is a nonenveloped single-stranded DNA (ssDNA) icosahedral T=1 virus being developed as a vector for clinical gene delivery systems. Currently, there are approximately 160 AAV clinical trials, with AAV2 being the most widely studied serotype. To further understand the AAV gene delivery system, this study investigates the role of viral protein (VP) symmetry interactions on capsid assembly, genome packaging, stability, and infectivity. A total of 25 (seven 2-fold, nine 3-fold, and nine 5-fold symmetry interface) AAV2 VP variants were studied. Six 2-fold and two 5-fold variants did not assemble capsids based on native immunoblots and anti-AAV2 enzyme-linked immunosorbent assays (ELISAs). Seven of the 3-fold and seven of the 5-fold variants that assembled capsids were less stable, while the only 2-fold variant that assembled had ~2°C higher thermal stability (Tm) than recombinant wild-type AAV2 (wtAAV2). Three of the 3-fold variants (AAV2-R432A, AAV2-L510A, and N511R) had an approximately 3-log defect in genome packaging. Consistent with previous reports of the 5-fold axes, the region of the capsid is important for VP1u externalization and genome ejection, and one 5-fold variant (R404A) had a significant defect in viral infectivity. The structures of wtAAV2 packaged with a transgene (AAV2-full) and without a transgene (AAV2-empty) and one 5-fold variant (AAV2-R404A) were determined by cryo-electron microscopy and three dimensional (3D)-image reconstruction to 2.8, 2.9, and 3.6 Å resolution, respectively. These structures revealed the role of stabilizing interactions on the assembly, stability, packaging, and infectivity of the virus capsid. This study provides insight into the structural characterization and functional implications of the rational design of AAV vectors. IMPORTANCE Adeno-associated viruses (AAVs) have been shown to be useful vectors for gene therapy applications. Consequently, AAV has been approved as a biologic for the treatment of several monogenic disorders, and many additional clinical trials are ongoing. These successes have generated significant interest in all aspects of the basic biology of AAV. However, to date, there are limited data available on the importance of the capsid viral protein (VP) symmetry-related interactions required to assemble and maintain the stability of the AAV capsids and the infectivity of the AAV capsids. Characterizing the residue type and interactions at these symmetry-driven assembly interfaces of AAV2 has provided the foundation for understanding their role in AAV vectors (serotypes and engineered chimeras) and has determined the residues or regions of the capsid that can or cannot tolerate alterations.


Assuntos
Capsídeo , Parvovirinae , Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Sorogrupo , Microscopia Crioeletrônica , Proteínas do Capsídeo/metabolismo , Parvovirinae/genética , Parvovirinae/metabolismo , Proteínas Virais/metabolismo , Vetores Genéticos , Montagem de Vírus
2.
Sci Adv ; 8(38): eabn4704, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129972

RESUMO

Bioengineering of viral vectors for therapeutic gene delivery is a pivotal strategy to reduce doses, facilitate manufacturing, and improve efficacy and patient safety. Here, we engineered myotropic adeno-associated viral (AAV) vectors via a semirational, combinatorial approach that merges AAV capsid and peptide library screens. We first identified shuffled AAVs with increased specificity in the murine skeletal muscle, diaphragm, and heart, concurrent with liver detargeting. Next, we boosted muscle specificity by displaying a myotropic peptide on the capsid surface. In a mouse model of X-linked myotubular myopathy, the best vectors-AAVMYO2 and AAVMYO3-prolonged survival, corrected growth, restored strength, and ameliorated muscle fiber size and centronucleation. In a mouse model of Duchenne muscular dystrophy, our lead capsid induced robust microdystrophin expression and improved muscle function. Our pipeline is compatible with complementary AAV genome bioengineering strategies, as demonstrated here with two promoters, and could benefit many clinical applications beyond muscle gene therapy.


Assuntos
Dependovirus , Distrofia Muscular de Duchenne , Animais , Bioengenharia , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Terapia Genética , Camundongos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Biblioteca de Peptídeos
3.
J Med Virol ; 94(9): 4542-4547, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577570

RESUMO

Gene therapy using an adeno-associated virus (AAV) vector offers a new treatment option for individuals with monogenetic disorders. The major bottleneck is the presence of pre-existing anti-AAV antibodies, which impacts its use. Even very low titers of neutralizing antibodies (NAb) to capsids from natural AAV infections have been reported to inhibit the transduction of intravenously administered AAV in animal models and are associated with limited efficacy in human trials. Assessing the level of pre-existing NAb is important for determining the primary eligibility of patients for AAV vector-based gene therapy clinical trials. Techniques used to screen AAV-antibodies include AAV capsid enzyme-linked immunosorbent assay (ELISA) and transduction inhibition assay (TIA) for detecting total capsid-binding (TAb) and Nab, respectively. In this study, we screened 521 individuals with hemophilia A from India for TAb and NAb using ELISA and TIA, respectively. The prevalence of TAb and NAb in hemophilia A patients from India were 96% and 77.5%, respectively. There was a significant increase in anti-AAV3 NAb prevalence with age in the hemophilia A patient group from India. There was a trend in anti-AAV3 TAb positivity between the pediatric age group (94.4%) and the adult age group (97.4%).


Assuntos
Anticorpos Antivirais , Hemofilia A , Adulto , Animais , Anticorpos Neutralizantes , Criança , Dependovirus/genética , Vetores Genéticos , Hemofilia A/epidemiologia , Hemofilia A/imunologia , Hemofilia A/terapia , Humanos , Prevalência , Sorogrupo
4.
J Virol ; 96(11): e0033522, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35532224

RESUMO

Adeno-associated viruses (AAVs) are being developed as clinical gene therapy vectors. One issue undermining their broad use in the clinical setting is the high prevalence of circulating antibodies in the general population capable of neutralizing AAV vectors. Hence, there is a need for AAV vectors that can evade the preexisting immune response. One possible source of human naive vectors are AAVs that do not disseminate in the primate population, and one such example is serpentine AAV (SAAV). This study characterizes the structural and biophysical properties of the SAAV capsid and its receptor interactions and antigenicity. Single particle cryo-electron microscopy (cryo-EM) and thermal stability studies were conducted to characterize the SAAV capsid structure at pH 7.4, 6.0, 5.5, and 4.0, conditions experienced during cellular trafficking. Cell binding assays using Chinese hamster ovary (CHO) cell lines identified terminal sialic acid as the primary attachment receptor for SAAV similar to AAV1, 4, 5, and 6. The binding site of sialic acid to the SAAV capsid was mapped near the 2-fold axis toward the 2/5-fold wall, in a different location than AAV1, 4, 5, and 6. Towards determining the SAAV capsid antigenicity native immunodot blots showed that SAAV evades AAV serotype-specific mouse monoclonal antibodies. However, despite its reptilian origin, it was recognized by ~25% of 50 human sera tested, likely due to the presence of cross-reactive antibodies. These findings will inform future gene delivery applications using SAAV-based vectors and further aid the structural characterization and annotation of the repertoire of available AAV capsids. IMPORTANCE AAVs are widely studied therapeutic gene delivery vectors. However, preexisting antibodies and their detrimental effect on therapeutic efficacy are a primary challenge encountered during clinical trials. In order to circumvent preexisting neutralizing antibodies targeting mammalian AAV capsids, serpentine AAV (SAAV) was evaluated as a potential alternative to existing mammalian therapeutic vectors. The SAAV capsid was found to be thermostable at a wide range of environmental pH conditions, and its structure showed conservation of the core capsid topology but displays high structural variability on the surface. At the same time, it binds to a common receptor, sialic acid, that is also utilized by other AAVs already being utilized in gene therapy trials. Contrary to the initial hypothesis, SAAV capsids were recognized by one in four human sera tested, pointing to conserved amino acids around the 5-fold region as epitopes for cross-reacting antibodies.


Assuntos
Capsídeo , Dependovirus , Animais , Células CHO , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Cricetinae , Cricetulus , Reações Cruzadas , Microscopia Crioeletrônica , Dependovirus/fisiologia , Epitopos , Vetores Genéticos , Humanos , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo
5.
J Virol ; 96(3): e0125121, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34757842

RESUMO

Adeno-associated viruses (AAV) serve as vectors for therapeutic gene delivery. AAV9 vectors have been FDA approved, as Zolgensma, for the treatment of spinal muscular atrophy and are being evaluated in clinical trials for the treatment of neurotropic and musculotropic diseases. A major hurdle for AAV-mediated gene delivery is the presence of preexisting neutralizing antibodies in 40 to 80% of the general population. These preexisting antibodies can reduce therapeutic efficacy through viral neutralization and the size of the patient cohort eligible for treatment. In this study, cryo-electron microscopy and image reconstruction were used to define the epitopes of five anti-AAV9 monoclonal antibodies (MAbs), ADK9, HL2368, HL2370, HL2372, and HL2374, on the capsid surface. Three of these, ADK9, HL2370, and HL2374, bound to or near the icosahedral 3-fold axes, HL2368 bound to the 2/5-fold wall, and HL2372 bound to the region surrounding the 5-fold axes. Pseudoatomic modeling enabled the mapping and identification of antibody contact amino acids on the capsid, including S454 and P659. These epitopes overlap previously defined parvovirus antigenic sites. Capsid amino acids critical for the interactions were confirmed by mutagenesis, followed by biochemical assays testing recombinant AAV9 (rAAV9) variants capable of escaping recognition and neutralization by the parental MAbs. These variants retained parental tropism and had similar or improved transduction efficiency compared to AAV9. These engineered rAAV9 variants could expand the patient cohort eligible for AAV9-mediated gene delivery by avoiding preexisting circulating neutralizing antibodies. IMPORTANCE The use of recombinant adeno-associated viruses (rAAVs) as delivery vectors for therapeutic genes is becoming increasingly popular, especially following the FDA approval of Luxturna and Zolgensma, based on serotypes AAV2 and AAV9, respectively. However, high-titer anti-AAV neutralizing antibodies in the general population exempt patients from treatment. The goal of this study is to circumvent this issue by creating AAV variant vectors not recognized by preexisting neutralizing antibodies. The mapping of the antigenic epitopes of five different monoclonal antibodies (MAbs) on AAV9, to recapitulate a polyclonal response, enabled the rational design of escape variants with minimal disruption to cell tropism and gene expression. This study, which included four newly developed and now commercially available MAbs, provides a platform for the engineering of rAAV9 vectors that can be used to deliver genes to patients with preexisting AAV antibodies.


Assuntos
Antígenos Virais/química , Antígenos Virais/imunologia , Dependovirus/imunologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Dependovirus/ultraestrutura , Mapeamento de Epitopos/métodos , Humanos , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
6.
Annu Rev Virol ; 8(1): 1-21, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586869

RESUMO

The saying "It takes a village to raise a child" has never been truer than in my case. This autobiographical article documents my growing up and working on three different continents and my influencers along the way. Born in a village in Nigeria, West Africa, I spent the first 12 years of life with my grandmother living in a mud house and attending a village primary school. I walked barefoot to school every day, learned to read, and wrote on a chalk slate. At the age of 13, I moved to my second "village," London, England. In secondary school my love of science began to blossom. I attained a double major in chemistry and human biology from the University of Hertfordshire and a PhD in biophysics from the University of London, with a research project aimed at designing anticancer agents. I was mentored by Terence Jenkins and Stephen Neidle. For my postdoctoral training, I crossed the ocean again, to the United States, my third "village." In Michael Rossmann's group at Purdue University, my love for viruses was ignited. My independent career in structural virology began at Warwick University, England, working on pathogenic single-stranded DNA packaging viruses. In 2020, I am a full professor at the University of Florida. Most of my research is focused on the adeno-associated viruses, gene delivery vectors. My list of mentors has grown and includes Nick Muzyczka. Here, the mentee has become the mentor, and along the way, we attained a number of firsts in the field of structural virology and contributed to the field at the national and international stages.


Assuntos
Vírus , África Ocidental , Criança , Humanos , Estados Unidos , Universidades
7.
J Virol ; 95(23): e0124921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549984

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are one of the leading tools for the delivery of therapeutic genes in human gene therapy applications. For a successful transfer of their payload, the AAV vectors have to circumvent potential preexisting neutralizing host antibodies and bind to the receptors of the target cells. Both of these aspects have not been structurally analyzed for AAVrh.10. Here, cryo-electron microscopy and three-dimensional image reconstruction were used to map the binding site of sulfated N-acetyllactosamine (LacNAc; previously shown to bind AAVrh.10) and a series of four monoclonal antibodies (MAbs). LacNAc was found to bind to a pocket located on the side of the 3-fold capsid protrusion that is mostly conserved to AAV9 and equivalent to its galactose-binding site. As a result, AAVrh.10 was also shown to be able to bind to cell surface glycans with terminal galactose. For the antigenic characterization, it was observed that several anti-AAV8 MAbs cross-react with AAVrh.10. The binding sites of these antibodies were mapped to the 3-fold capsid protrusions. Based on these observations, the AAVrh.10 capsid surface was engineered to create variant capsids that escape these antibodies while maintaining infectivity. IMPORTANCE Gene therapy vectors based on adeno-associated virus rhesus isolate 10 (AAVrh.10) have been used in several clinical trials to treat monogenetic diseases. However, compared to other AAV serotypes little is known about receptor binding and antigenicity of the AAVrh.10 capsid. Particularly, preexisting neutralizing antibodies against capsids are an important challenge that can hamper treatment efficiency. This study addresses both topics and identifies critical regions of the AAVrh.10 capsid for receptor and antibody binding. The insights gained were utilized to generate AAVrh.10 variants capable of evading known neutralizing antibodies. The findings of this study could further aid the utilization of AAVrh.10 vectors in clinical trials and help the approval of the subsequent biologics.


Assuntos
Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Capsídeo/química , Dependovirus/metabolismo , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Células CHO , Capsídeo/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Cricetulus , Microscopia Crioeletrônica , Dependovirus/genética , Dependovirus/imunologia , Terapia Genética , Células HEK293 , Humanos , Imunoglobulina G , Modelos Moleculares , Polissacarídeos , Ligação Proteica
8.
J Struct Biol ; 213(4): 107795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509611

RESUMO

Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos/genética , Mutagênese Sítio-Dirigida , Animais , Sítios de Ligação/genética , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Dependovirus/química , Dependovirus/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Células Sf9 , Spodoptera , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
9.
J Virol ; 95(19): e0084321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260280

RESUMO

Adeno-associated viruses (AAVs) are small nonenveloped single-stranded DNA (ssDNA) viruses that are currently being developed as gene therapy biologics. After cell entry, AAVs traffic to the nucleus using the endo-lysosomal pathway. The subsequent decrease in pH triggers conformational changes to the capsid that enable the externalization of the capsid protein (VP) N termini, including the unique domain of the minor capsid protein VP1 (VP1u), which permits the phospholipase activity required for the capsid lysosomal egress. Here, we report the AAV9 capsid structure, determined at the endosomal pHs (7.4, 6.0, 5.5, and 4.0), and terminal galactose-bound AAV9 capsids at pHs 7.4 and 5.5 using cryo-electron microscopy and three-dimensional image reconstruction. Taken together, these studies provide insight into AAV9 capsid conformational changes at the 5-fold pore during endosomal trafficking, in both the presence and absence of its cellular glycan receptor. We visualized, for the first time, that acidification induces the externalization of the VP3 and possibly VP2 N termini, presumably in prelude to the externalization of VP1u at pH 4.0, which is essential for lysosomal membrane disruption. In addition, the structural study of AAV9-galactose interactions demonstrates that AAV9 remains attached to its glycan receptor at the late endosome pH 5.5. This interaction significantly alters the conformational stability of the variable region I of the VPs, as well as the dynamics associated with VP N terminus externalization. IMPORTANCE There are 13 distinct Adeno-associated virus (AAV) serotypes that are structurally homologous and whose capsid proteins (VP1 to -3) are similar in amino acid sequence. However, AAV9 is one of the most commonly studied and is used as a gene therapy vector. This is partly because AAV9 is capable of crossing the blood-brain barrier and readily transduces a wide array of tissues, including the central nervous system. In this study, we provide AAV9 capsid structural insight during intracellular trafficking. Although the AAV capsid has been shown to externalize the N termini of its VPs, to enzymatically disrupt the lysosome membrane at low pH, there was no structural evidence to confirm this. By utilizing AAV9 as our model, we provide the first structural evidence that the externalization process occurs at the protein interface at the icosahedral 5-fold symmetry axis and can be triggered by lowering the pH.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , Dependovirus/química , Dependovirus/ultraestrutura , Endossomos/metabolismo , Galactose/metabolismo , Polissacarídeos/metabolismo , Acetilgalactosamina/metabolismo , Capsídeo/química , Microscopia Crioeletrônica , Dependovirus/metabolismo , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Receptores Virais/metabolismo
10.
J Virol ; 95(19): e0058721, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34232726

RESUMO

Adeno-associated viruses utilize different glycans and the AAV receptor (AAVR) for cellular attachment and entry. Directed evolution has yielded new AAV variants; however, structure-function correlates underlying their improved transduction are generally overlooked. Here, we report that infectious cycling of structurally diverse AAV surface loop libraries yields functionally distinct variants. Newly evolved variants show enhanced cellular binding, uptake, and transduction, but through distinct mechanisms. Using glycan-based and genome-wide CRISPR knockout screens, we discover that one AAV variant acquires the ability to recognize sulfated glycosaminoglycans, while another displays receptor switching from AAVR to integrin ß1 (ITGB1). A previously evolved variant, AAVhum.8, preferentially utilizes the ITGB1 receptor over AAVR. Visualization of the AAVhum.8 capsid by cryoelectron microscopy at 2.49-Å resolution localizes the newly acquired integrin recognition motif adjacent to the AAVR footprint. These observations underscore the new finding that distinct AAV surface epitopes can be evolved to exploit different cellular receptors for enhanced transduction. IMPORTANCE Understanding how viruses interact with host cells through cell surface receptors is central to discovery and development of antiviral therapeutics, vaccines, and gene transfer vectors. Here, we demonstrate that distinct epitopes on the surface of adeno-associated viruses can be evolved by infectious cycling to recognize different cell surface carbohydrates and glycoprotein receptors and solve the three-dimensional structure of one such newly evolved AAV capsid, which provides a roadmap for designing viruses with improved attributes for gene therapy applications.


Assuntos
Dependovirus/genética , Dependovirus/metabolismo , Evolução Molecular Direcionada , Receptores Virais/metabolismo , Motivos de Aminoácidos , Sistemas CRISPR-Cas , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Dependovirus/química , Dependovirus/ultraestrutura , Variação Genética , Glicosaminoglicanos/metabolismo , Humanos , Integrina beta1/química , Integrina beta1/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/química , Internalização do Vírus
11.
J Virol ; 95(19): e0077321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287038

RESUMO

Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new cap, genes resulting in hundreds of natural and engineered AAV capsid variants, while the rep gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the rep gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major by-product of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the rep genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 rep was replaced with the rep gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2-rep system. In further experiments the 3' end of the AAV2 rep gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids approximately 2- to -4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production. IMPORTANCE A major by-product of all adeno-associated virus (AAV) vector production systems are "empty" capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional immune responses in vivo gene therapies if not removed by additional purification steps. Thus, there is a need to increase the genome packaging efficiency and reduce the number of empty capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes and improve overall yields of genome-containing AAV capsids at the same time. They can likely be integrated easily into existing AAV manufacturing protocols to optimize the production of the generated AAV gene therapy products.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Genes Virais , Vetores Genéticos , Empacotamento do Genoma Viral , Proteínas Virais/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas de Ligação a DNA/genética , Dependovirus/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão
12.
Nat Commun ; 12(1): 1642, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712599

RESUMO

Adeno-associated viruses (AAVs) are increasingly used as gene therapy vectors. AAVs package their genome in a non-enveloped T = 1 icosahedral capsid of ~3.8 megaDalton, consisting of 60 subunits of 3 distinct viral proteins (VPs), which vary only in their N-terminus. While all three VPs play a role in cell-entry and transduction, their precise stoichiometry and structural organization in the capsid has remained elusive. Here we investigate the composition of several AAV serotypes by high-resolution native mass spectrometry. Our data reveal that the capsids assemble stochastically, leading to a highly heterogeneous population of capsids of variable composition, whereby even the single-most abundant VP stoichiometry represents only a small percentage of the total AAV population. We estimate that virtually every AAV capsid in a particular preparation has a unique composition. The systematic scoring of the simulations against experimental native MS data offers a sensitive new method to characterize these therapeutically important heterogeneous capsids.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/metabolismo , Animais , Dependovirus/genética , Células HEK293 , Humanos , Sorogrupo , Células Sf9 , Proteínas Virais/metabolismo , Montagem de Vírus
13.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33472934

RESUMO

Human bocavirus 1 (HBoV1) and HBoV2-4 infect children and immunocompromised individuals, resulting in respiratory and gastrointestinal infections, respectively. Using cryo-electron microscopy and image reconstruction, the HBoV2 capsid structure was determined to 2.7 Å resolution at pH 7.4 and compared to the previously determined HBoV1, HBoV3, and HBoV4 structures. Consistent with previous findings, surface variable region (VR) III of the capsid protein VP3, proposed as a host tissue-tropism determinant, was structurally similar among the gastrointestinal strains HBoV2-4, but differed from HBoV1 with its tropism for the respiratory tract. Towards understanding the entry and trafficking properties of these viruses, HBoV1 and HBoV2 were further analyzed as species representatives of the two HBoV tropisms. Their cell surface glycan-binding characteristics were analyzed, and capsid structures determined to 2.5-2.7 Å resolution at pH 5.5 and 2.6, conditions normally encountered during infection. The data showed that glycans with terminal sialic acid, galactose, GlcNAc or heparan sulfate moieties do not facilitate HBoV1 or HBoV2 cellular attachment. With respect to trafficking, conformational changes common to both viruses were observed at low pH conditions localized to the VP N-terminus under the 5-fold channel, in the surface loops VR-I and VR-V and specific side-chain residues such as cysteines and histidines. The 5-fold conformational movements provide insight into the potential mechanism of VP N-terminal dynamics during HBoV infection and side-chain modifications highlight pH-sensitive regions of the capsid.IMPORTANCE Human bocaviruses (HBoVs) are associated with disease in humans. However, the lack of an animal model and a versatile cell culture system to study their life cycle limits the ability to develop specific treatments or vaccines. This study presents the structure of HBoV2, at 2.7 Å resolution, determined for comparison to the existing HBoV1, HBoV3, and HBoV4 structures, to enable the molecular characterization of strain and genus-specific capsid features contributing to tissue tropism and antigenicity. Furthermore, HBoV1 and HBoV2 structures determined under acidic conditions provide insight into capsid changes associated with endosomal and gastrointestinal acidification. Structural rearrangements of the capsid VP N-terminus, at the base of the 5-fold channel, demonstrate a disordering of a "basket" motif as pH decreases. These observations begin to unravel the molecular mechanism of HBoV infection and provide information for control strategies.

14.
Viruses ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450892

RESUMO

The capsid structures of most Adeno-associated virus (AAV) serotypes, already assigned to an antigenic clade, have been previously determined. This study reports the remaining capsid structures of AAV7, AAV11, AAV12, and AAV13 determined by cryo-electron microscopy and three-dimensional image reconstruction to 2.96, 2.86, 2.54, and 2.76 Å resolution, respectively. These structures complete the structural atlas of the AAV serotype capsids. AAV7 represents the first clade D capsid structure; AAV11 and AAV12 are of a currently unassigned clade that would include AAV4; and AAV13 represents the first AAV2-AAV3 hybrid clade C capsid structure. These newly determined capsid structures all exhibit the AAV capsid features including 5-fold channels, 3-fold protrusions, 2-fold depressions, and a nucleotide binding pocket with an ordered nucleotide in genome-containing capsids. However, these structures have viral proteins that display clade-specific loop conformations. This structural characterization completes our three-dimensional library of the current AAV serotypes to provide an atlas of surface loop configurations compatible with capsid assembly and amenable for future vector engineering efforts. Derived vectors could improve gene delivery success with respect to specific tissue targeting, transduction efficiency, antigenicity or receptor retargeting.


Assuntos
Capsídeo/ultraestrutura , Dependovirus/classificação , Dependovirus/ultraestrutura , Modelos Moleculares , Vírion/ultraestrutura , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Dependovirus/genética , Genoma Viral , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Sorogrupo
15.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33441336

RESUMO

Adeno-associated viruses (AAV) have attracted significant attention in the field of gene and cell therapy due to highly effective delivery of therapeutic genes into human cells. The ability to generate recombinant AAV vectors compromised of unique or substituted protein sequences has led to the development of capsid variants with improved therapeutic properties. Seeking novel AAV vectors capable of enhanced transduction for therapeutic applications, we have developed a series of unique capsid variants termed AAV X-Vivo (AAV-XV) derived from chimeras of AAV12 VP1/2 sequences and the VP3 sequence of AAV6. These AAV variants showed enhanced infection of human primary T cells, hematopoietic stem cells, and neuronal cell lines over wildtype parental viruses, and superiority over AAV6 for genomic integration of DNA sequences by AAV alone or in combination with CRISPR gene editing. AAV-XV variants demonstrate transduction efficiency equivalent to AAV6 at multiplicities of infection 2 logs lower, enabling T cell engineering at low AAV doses. The protein coding sequence of these novel AAV chimeras revealed disruptions within the assembly-activating protein (AAP) which likely accounted for observed lower virus yield. A series of genome alterations, reverting the AAP sequence back to wildtype AAV6, had a negative impact on the enhanced transduction seen with AAV-VX, indicating overlapping functions within this sequence for both viral assembly and effective T cell transduction. Our findings show these AAV-XV variants are highly efficient at cell transduction at low dose and demonstrates the importance of the AAP coding region in both viral particle assembly and cell infection.IMPORTANCE A major hurdle to the therapeutic potential of AAV in gene therapy lies in achieving clinically meaningful AAV doses, and secondarily, ability to manufacture commercially viable titers of AAV to support this. By virtue of neutralizing antibodies against AAV that impede patient repeat-dosing, the dose of AAV for in vivo gene delivery has been high, which has resulted in unfortunate recent safety concerns and deaths in patients given higher-dose AAV gene therapy. We have generated new AAV variants possessing unique combinations of capsid proteins for gene and cell therapy applications termed AAV-XV, which have high levels of cell transduction and gene delivery at lower MOI. Furthermore, we demonstrate a novel finding, and an important consideration for recombinant AAV design, that a region of the AAV genome encoding the capsid viral protein and AAP is critical for both virus yield and the enhancement of infection/transduction.

16.
Hum Gene Ther ; 32(9-10): 451-457, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33207962

RESUMO

Adeno-associated virus (AAV) vector-based gene therapy offers a new treatment option for individuals with hemophilia. Pre-existing anti-AAV antibodies significantly impact the use of AAV vectors. Even relatively low titers of AAV neutralizing antibodies (NAb) from natural AAV infections against the capsid have been shown to inhibit the transduction of intravenously administered AAV in animal models and were associated with limited efficacy in human trials. This is important for determining the primary eligibility of patients for AAV vector-based gene therapy clinical trials. Current techniques to screen AAV antibodies include AAV capsid enzyme-linked immunosorbent assay (ELISA) for total antibodies and a transduction inhibition assay (TIA) for NAb. This study developed and screened total capsid binding anti-AAV3 antibodies by using ELISA and determined NAb levels by TIA using mCherry flow cytometry in healthy individuals with hemophilia B in India. One hundred and forty-three apparently healthy controls and 92 individuals with hemophilia B were screened. The prevalence of total and NAb in healthy controls was 79.7% and 65%, respectively; the prevalence of total and NAb in patients with hemophilia B for AAV3 was 92.4% and 91.3%, respectively.


Assuntos
Dependovirus , Hemofilia B , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Capsídeo , Dependovirus/genética , Vetores Genéticos/genética , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Prevalência
17.
Viral Immunol ; 34(1): 3-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32315582

RESUMO

The parvoviruses are small nonenveloped single stranded DNA viruses that constitute members that range from apathogenic to pathogenic in humans and animals. The infection with a parvovirus results in the generation of antibodies against the viral capsid by the host immune system to eliminate the virus and to prevent re-infection. For members currently either being developed as delivery vectors for gene therapy applications or as oncolytic biologics for tumor therapy, efforts are aimed at combating the detrimental effects of pre-existing or post-treatment antibodies that can eliminate therapeutic benefits. Therefore, understanding antigenic epitopes of parvoviruses can provide crucial information for the development of vaccination applications and engineering novel capsids able to escape antibody recognition. This review aims to capture the information for the binding regions of ∼30 capsid-antibody complex structures of different parvovirus capsids determined to date by cryo-electron microscopy and three-dimensional image reconstruction. The comparison of all complex structures revealed the conservation of antigenic regions among parvoviruses from different genera despite low sequence identity and indicates that the available data can be used across the family for vaccine development and capsid engineering.


Assuntos
Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo , Capsídeo/química , Capsídeo/imunologia , Epitopos , Parvovirus/química , Parvovirus/imunologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Microscopia Crioeletrônica , Epitopos/química , Epitopos/imunologia , Humanos , Parvovirus/classificação , Desenvolvimento de Vacinas
18.
Mol Ther Methods Clin Dev ; 19: 362-373, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33145372

RESUMO

Affinity-based purification of adeno-associated virus (AAV) vectors has replaced density-based methods for vectors used in clinical settings. This method utilizes camelid single-domain antibodies recognizing AAV capsids. These include AVB Sepharose (AVB) and POROS CaptureSelect affinity ligand for AAV8 (CSAL8) and AAV9 (CSAL9). In this study, we utilized cryo-electron microscopy and 3D image reconstruction to map the binding sites of these affinity ligands on the capsids of several AAV serotypes, including AAV1, AAV2, AAV5, AAV8, and AAV9, representing the range of sequence and structure diversity among AAVs. The AAV-ligand complex structures showed that AVB and CSAL9 bound to the 5-fold capsid region, although in different orientations, and CSAL8 bound to the side of the 3-fold protrusion. The AAV contact residues required for ligand binding, and thus AAV purification, and the ability of the ligands to neutralize infection were analyzed. The data show that only a few residues within the epitopes served to block affinity ligand binding. Neutralization was observed for AAV1 and AAV5 with AVB, for AAV1 with CSAL8, and for AAV9 with CSAL9, associated with regions that overlap with epitopes for neutralizing monoclonal antibodies against these capsids. This information is critical and could be generally applicable in the development of novel AAV vectors amenable to affinity column purification.

19.
Sci Transl Med ; 12(560)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908003

RESUMO

Recent clinical successes in gene therapy applications have intensified interest in using adeno-associated viruses (AAVs) as vectors for therapeutic gene delivery. Although prototypical AAV2 shows robust in vitro transduction of human hepatocyte-derived cell lines, it has not translated into an effective vector for liver-directed gene therapy in vivo. This is consistent with observations made in Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice with humanized livers, showing that AAV2 functions poorly in this xenograft model. Here, we derived naturally hepatotropic AAV capsid sequences from primary human liver samples. We demonstrated that capsid mutations, likely acquired as an unintentional consequence of tissue culture propagation, attenuated the intrinsic human hepatic tropism of natural AAV2 and related human liver AAV isolates. These mutations resulted in amino acid changes that increased binding to heparan sulfate proteoglycan (HSPG), which has been regarded as the primary cellular receptor mediating AAV2 infection of human hepatocytes. Propagation of natural AAV variants in vitro showed tissue culture adaptation with resulting loss of tropism for human hepatocytes. In vivo readaptation of the prototypical AAV2 in FRG mice with a humanized liver resulted in restoration of the intrinsic hepatic tropism of AAV2 through decreased binding to HSPG. Our results challenge the notion that high affinity for HSPG is essential for AAV2 entry into human hepatocytes and suggest that natural AAV capsids of human liver origin are likely to be more effective for liver-targeted gene therapy applications than culture-adapted AAV2.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Capsídeo , Dependovirus/genética , Humanos , Fígado , Camundongos , Transdução Genética , Tropismo
20.
Virus Evol ; 6(2): veaa043, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32913662

RESUMO

Endogenous viral elements (EVEs) are genetic remnants of viruses that have integrated into host genomes millions of years ago and retained as heritable elements passed on to offspring until present-day. As a result, EVEs provide an opportunity to analyse the genomes of extinct viruses utilizing these genomic viral fossils to study evolution of viruses over large timescales. Analysis of sequences from near full-length EVEs of dependoparvoviral origin identified within three mammalian taxa, Whippomorpha (whales and hippos), Vespertilionidae (smooth-nosed bats), and Lagomorpha (rabbits, hares, and pikas), indicates that distinct ancestral dependoparvovirus species integrated into these host genomes approximately 77 to 23 million years ago. These ancestral viruses are unique relative to modern adeno-associated viruses (AAVs), and distinct from extant species of genus Dependoparvovirus. These EVE sequences show characteristics previously unseen in modern, mammalian AAVs, but instead appear more similar to the more primitive, autonomously replicating and pathogenic waterfowl dependoparvoviruses. Phylogeny reconstruction suggests that the whippomorph EVE orthologue derives from exogenous ancestors of autonomous and highly pathogenic dependoparvovirus lineages, believed to have uniquely co-evolved with waterfowl birds to present date. In contrast, ancestors of the two other mammalian orthologues (Lagomorpha and Vespertilionidae) likely shared the same lineage as all other known mammalian exogenous AAVs. Comparative in silico analysis of the EVE genomes revealed remarkable overall conservation of AAV rep and cap genes, despite millions of years of integration within the host germline. Modelling these proteins identified unexpected variety, even between orthologues, in previously defined capsid viral protein (VP) variable regions, especially in those related to the three- and fivefold symmetry axes of the capsid. Moreover, the normally well-conserved phospholipase A2 domain of the predicted minor VP1 also exhibited a high degree of sequence variance. These findings may indicate unique biological properties for these virus 'fossils' relative to extant dependoparvoviruses and suggest key regions to explore within capsid sequences that may confer novel properties for engineered gene therapy vectors based on paleovirology data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA