Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556013

RESUMO

BACKGROUND: Platelets play a role in venous thromboembolism (VTE) and in mediating colorectal cancer (CRC) progression. Still, platelets' role in hypercoagulability after surgical intervention for metastatic bone disease (MBD) is ill-defined. METHODS: In this quantitative observational study, we utilized a high-resolution imaging approach to temporally examine platelet procoagulant membrane dynamics (PMD) in four patients with MBD from primary CRC (CRC/MBD), before and after surgical intervention, over a 6-month period. We coupled this investigation with thrombelastography, quantitative plasma shotgun proteomics, and biochemical analysis. RESULTS: The plasma of CRC/MBD patients was enriched in ADAM1a, ADAMTS7, and physiological ligands for platelet glycoprotein-VI/spleen tyrosine kinase (GPVI/Syk) activation. Thromboprophylaxis attenuated procoagulation upon its initial prescription (post-operative day one, POD1); however, all patients experienced rebound procoagulation between POD3 and POD14, which was associated with Syk activation (Y525/Y526) in all patients, and a VTE event in two patients. Plasma levels of DNA-histone complexes increased steadily after surgery and remained elevated throughout the study period. Additionally, we increasingly sighted both homotypic and heterotypic platelet microaggregates after surgery in CRC/MBD patients, but not in healthy control participants' plasma. CONCLUSIONS: Our data elucidates the cell biology of a prothrombo-inflammatory state caused by disease and vascular injury, and recalcitrant to thromboprophylaxis. New mechanistic insights into hypercoagulability in CRC/MBD patients may identify novel drug targets for effective thromboprophylaxis type and duration after orthopaedic surgery.

2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638997

RESUMO

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3ß. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3ß (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/ß phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/ß reduced thrombin-mediated platelet aggregation, integrin αIIbß3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3ß phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3ß resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/ß KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3ß KI. In conclusion, our data indicate that GSK3α and GSK3ß have differential roles in regulating platelet function.


Assuntos
Plaquetas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Transdução de Sinais/genética , Trombose/metabolismo , Animais , Doadores de Sangue , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Trombose/genética
3.
J Biol Chem ; 292(5): 1691-1704, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27903653

RESUMO

The class I PI3K family of lipid kinases plays an important role in integrin αIIbß3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbß3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to the plasma membrane in a PI3K-dependent manner upon activation of human platelets. Expression of wild-type Rasa3 in integrin αIIbß3-expressing CHO cells blocked Rap1 activity and integrin αIIbß3-mediated spreading on fibrinogen. In contrast, Rap1GAP-deficient (P489V) and Ras/Rap1GAP-deficient (R371Q) Rasa3 had no effect. We furthermore show that two Rasa3 mutants (H794L and G125V), which are expressed in different mouse models of thrombocytopenia, lack both Ras and Rap1GAP activity and do not affect integrin αIIbß3-mediated spreading of CHO cells on fibrinogen. Platelets from thrombocytopenic mice expressing GAP-deficient Rasa3 (H794L) show increased spreading on fibrinogen, which in contrast to wild-type platelets is insensitive to PI3K inhibitors. Together, these results support an important role for Rasa3 in PI3K-dependent integrin αIIbß3-mediated outside-in signaling and cell spreading.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos/genética , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Receptores Citoplasmáticos e Nucleares/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA