Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33703, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027555

RESUMO

Cancer, a prevalent disease across various societies, presents a significant challenge in treatment research. Studies show that combination therapies are one of the methods that can help in the effective treatment of cancer. Chemotherapy and radiation therapy are among the main cancer treatments and in this project, for combined chemoradiotherapy treatment, carbon nanotubes were used as improved carriers of chemotherapy in tumors, as well as a substrate for the preparation of radiation sensitizers for local radiation therapy. Following the synthesis of CNT-Platinum-Curcumin nanoparticles (CNT-Pt-CUR), a series of analyses were conducted to verify the successful production of these nanoparticles. Techniques such as Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) were employed. The characterization data revealed a spherical shape Pt nanoparticle morphology with an 8.5 nm diameter on rod-shape CNT, as observed through TEM. Furthermore, FTIR analysis confirmed the successful loaded of the drug into the nanoparticles, highlighting the potential of this approach in cancer treatment. Then, hemolysis and (3(-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests on normal cells were used to assess the biocompatibility of CNT-Pt-CUR nanoparticles. It also explored the anticancer efficacy of these nanoparticles at varying concentrations against cancer cells, both with and without exposure to X-rays. The research confirmed the successful synthesis of these nanoparticles and demonstrated their potential impact on cell viability. Specifically, breast cancer cells exhibited heightened susceptibility to toxicity when exposed to nanoparticles and X-rays. Further analysis revealed that the toxicity of nanoparticles is dose-dependent, and modifying the surface of carbon nanotube (CNT) nanoparticles with CUR significantly reduced blood toxicity. Interestingly, nanoparticle toxicity was significantly amplified in the presence of X-rays, suggesting mechanisms such as DNA damage and increased reactive oxygen species (ROS) levels within cells.

2.
Mikrochim Acta ; 190(5): 184, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37069457

RESUMO

In recent years, various types of radiosensitizers have been developed to address the challenges of cancer radiotherapy. Here, platinum-functionalized oxygenated single-walled carbon nanotubes (O-SWCNTs-Pt) coated with folic acid (FA) and bovine serum albumin (BSA) (O-SWCNTs-Pt-BSA-FA) were synthesized, characterized, and used as radiosensitizers to improve the therapeutic efficacy of X-rays in a mouse model of breast cancer (4T1) in vitro. The nanosensitizer was characterized by different techniques, such as transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet-visible (UV-visible), and Fourier transform infrared (FTIR) spectrometry. The evaluation of cell viability with nanocarriers O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA is reported at the concentrations of 10, 30, and 90 µg/mL by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence and absence of X-rays at 4 and 8 Gy. The results showed that administration of O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA + 8 Gy at a concentration of 90 µg/mL reduced survival by 75.31, 65.32, 67.35, and 60.35%, respectively. O-SWCNTs-Pt-BSA-FA has a hydrodynamic size of 88.57 nm and a surface charge of -29 mV, which indicates special stability. Compared with O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, and Pt-BSA-FA, it has very strong cell-killing activity in the 4T1 cell line. It is also noteworthy that SWCNTs can act as a controlled release and delivery system for PtNPs due to their unique properties and easy penetration into biological membranes. As a result, the  new nanosensitizer may play a role in cancer treatment in conjunction with radiotherapy technology. Graphical abstract.


Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Neoplasias , Animais , Camundongos , Nanotubos de Carbono/química , Platina , Raios X , Linhagem Celular , Soroalbumina Bovina/química , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA