Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Life Sci ; 329: 121970, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481033

RESUMO

Cancer cells are surrounded by a complex and highly dynamic tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), a critical component of TME, contribute to cancer cell proliferation as well as metastatic spread. CAFs express a variety of biomarkers, which can be targeted for detection and therapy. Most importantly, CAFs express high levels of fibroblast activation protein (FAP) which contributes to progression of cancer, invasion, metastasis, migration, immunosuppression, and drug resistance. As a consequence, FAP is an attractive theranostic target. In this review, we discuss the latest advancement in targeting FAP in oncology using theranostic biomarkers and imaging modalities such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), fluorescence imaging, and magnetic resonance imaging (MRI).


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Serina Endopeptidases/metabolismo , Medicina de Precisão , Proteínas de Membrana/metabolismo , Neoplasias/terapia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
2.
Bioimpacts ; 13(3): 255-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431477

RESUMO

Introduction: Mesoporous silica nanoparticles (MSNPs) are considered innovative multifunctional structures for targeted drug delivery owing to their outstanding physicochemical characteristics. Methods: MSNPs were fabricated using the sol-gel method, and polyethylene glycol-600 (PEG600) was used for MSNPs modification. Subsequently, sunitinib (SUN) was loaded into the MSNPs, MSNP-PEG and MSNP-PEG/SUN were grafted with mucin 16 (MUC16) aptamers. The nanosystems (NSs) were characterized using FT-IR, TEM, SEM, DLS, XRD, BJH, and BET. Furthermore, the biological impacts of MSNPs were evaluated on the ovarian cancer cells by MTT assay and flow cytometry analysis. Results: The results revealed that the MSNPs have a spherical shape with an average dimension, pore size, and surface area of 56.10 nm, 2.488 nm, and 148.08 m2g-1, respectively. The cell viability results showed higher toxicity of targeted MSNPs in MUC16 overexpressing OVCAR-3 cells as compared to the SK-OV-3 cells; that was further confirmed by the cellular uptake results. The cell cycle analysis exhibited that the induction of sub-G1 phase arrest mostly occurred in MSNP-PEG/SUN-MUC16 treated OVCAR-3 cells and MSNP-PEG/SUN treated SK-OV-3 cells. DAPI staining showed apoptosis induction upon exposure to targeted MSNP in MUC16 positive OVCAR-3 cells. Conclusion: According to our results, the engineered NSs could be considered an effective multifunctional targeted drug delivery platform for the mucin 16 overexpressing cells.

3.
Life Sci ; 328: 121917, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422069

RESUMO

Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Medicina de Precisão , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral
4.
Environ Res ; 236(Pt 1): 116726, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495062

RESUMO

Vascular endothelial growth factor (VEGF) is a remarkable cytokine that plays an important role in regulating vascular formation during the angiogenesis process. Therefore, real-time detection and quantification of VEGF is essential for clinical diagnosis and treatment due to its overexpression in various tumors. Among various sensing strategies, the aptamer-based sensors in combination with biological molecules improve the detection ability VEGFs. Aptamers are suitable biological recognition agents for the preparation of sensitive and reproducible aptasensors (Apt-sensors) due to their low immunogenicity, simple and straightforward chemical modification, and high resistance to denaturation. Here, a summary of the strategies for immobilization of aptamers (e.g., direct or self-assembled monolayer (SAM) attachment, etc.) on different types of electrodes was provided. Moreover, we discussed nanoparticle deposition techniques and surface modification methods used for signal amplification in the detection of VEGF. Furthermore, we are investigating various types of optical and electrochemical Apt-sensors used to improve sensor characterization in the detection of VEGF biomarkers.

5.
Int J Biol Macromol ; 241: 124573, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100325

RESUMO

Recent trends in bone tissue engineering have focused on the development of biomimetic constructs with appropriate mechanical and physiochemical properties. Here, we report the fabrication of an innovative biomaterial scaffold based on a new bisphosphonate-containing synthetic polymer combined with gelatin. To this end, zoledronate (ZA)-functionalized polycaprolactone (PCL-ZA) was synthesized by a chemical grafting reaction. After adding gelatin to the PCL-ZA polymer solution, the porous PCL-ZA/gelatin scaffold was fabricated by the freeze-casting method. A scaffold with aligned pores and a porosity of 82.04 % was obtained. During in vitro biodegradability test, 49 % of its initial weight lost after 5 weeks. The elastic modulus of the PCL-ZA/gelatin scaffold was 31.4 MPa, and its tensile strength was 4.2 MPa. Based on the results of MTT assay, the scaffold had good cytocompatibility with human Adipose-Derived Mesenchymal Stem Cells (hADMSCs). Furthermore, cells grown in PCL-ZA/gelatin scaffold showed the highest mineralization and ALP activity compared to other test groups. Results of the RT-PCR test revealed that RUNX2, COL 1A1, and OCN genes were expressed in PCL-ZA/gelatin scaffold at the highest level, suggesting its good osteoinductive capacity. These results revealed that PCL-ZA/gelatin scaffold could be considered a proper biomimetic platform for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Osteogênese , Gelatina/química , Difosfonatos , Engenharia Tecidual/métodos , Poliésteres/química , Diferenciação Celular , Polímeros , Ácido Zoledrônico
6.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615606

RESUMO

Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores. Subsequently, sunitinib (SUN) was loaded into the MMSNPs, and the particles were armed with amine-modified mucin 1 (MUC-1) aptamers. The MMSNPs were characterized using FT-IR, TEM, SEM, electrophoresis gel, DLS, and EDX. MTT assay, flow cytometry analysis, ROS assessment, and mitochondrial membrane potential analysis evaluated the nanoparticles' biological impacts. The physicochemical analysis revealed that the engineered MMSNPs have a smooth surface and spherical shape with an average size of 97.6 nm. The biological in vitro analysis confirmed the highest impacts of the targeted MMSNPs in MUC-1 overexpressing cells (OVCAR-3) compared to the MUC-1 negative MDA-MB-231 cells. In conclusion, the synthesized MMSNP-SUN-MUC-1 nanosystem serves as a unique multifunctional targeted delivery system to combat the MUC-1 overexpressing ovarian cancer cells.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Sunitinibe , Linhagem Celular Tumoral , Apoptose , Dióxido de Silício/química , Mucina-1/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Fenômenos Magnéticos , Porosidade
7.
Mol Imaging Biol ; 25(3): 464-482, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36517729

RESUMO

The tumor microenvironment (TME) play critical roles in tumor survival, progression, and metastasis and can be considered potential targets for molecular imaging of cancer. The targeting agents for imaging of TME components (e.g., fibroblasts, mesenchymal stromal cells, immune cells, extracellular matrix, blood vessels) provide a promising strategy to target these biomarkers for the early diagnosis of cancers. Moreover, various cancer types have similar tumor immune microenvironment (TIME) features that targeting those biomarkers and offer clinically translatable molecular imaging of cancers. In this review, we categorize and summarize the components in TME which have been targeted for molecular imaging. Moreover, this review updated the recent progress in targeted imaging of TIME biological molecules by various modalities for the early detection of cancer.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/diagnóstico , Neoplasias/patologia , Imagem Molecular , Células-Tronco Mesenquimais/patologia , Fibroblastos
8.
Life Sci ; 307: 120898, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987340

RESUMO

Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Espécies Reativas de Oxigênio/metabolismo
9.
J Microencapsul ; 39(4): 394-408, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35748819

RESUMO

The use of magnetic nanoparticles (MNPs) in biomedical applications has been wildly opted due to their unique properties. Here, we designed MNPs loaded with erlotinib (ERL/SPION-Val-PEG) and conjugated them with anti-mucin16 (MUC16) aptamer to introduce new image-guided nanoparticles (NPs) for targeted drug delivery as well as non-invasive magnetic resonance imaging (MRI) contrast agents. Also, the combination of our nanosystem (NS) along with L-Asparaginase (L-ASPN) led to synergistic effects in terms of reducing cell viability in ovarian cancer cells, which could suggest a novel combination therapy. The mean size of our NS was about 63.4 ± 3.4 nm evaluated by DLS analysis and its morphology was confirmed using TEM. Moreover, the functional groups, as well as magnetic properties of our NS, were examined by FT-IR and VSM tests, respectively. The loading efficacy of erlotinib on MNPs was about 80% and its release reached 70.85% over 7 days in the pH value of 5.4. The MR images and flow cytometry results revealed that the cellular uptake of ERL/SPION-Val-PEG-MUC16 NPs in cells with MUC16 overexpression was considerably higher than unarmed NPs. In addition, T2-weight MR images of ovarian cancer-bearing mice indicated significant signal intensity changes at the tumour site 4 h after intravenous injection compared to the non-target MNPs. Our data suggest ERL/SPION-Val-PEG NPs as an image-guided co-drug delivery system for ovarian cancer.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias Ovarianas , Animais , Asparaginase , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Life Sci ; 298: 120499, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35346674

RESUMO

Breast cancer (BC) has different clinical manifestations due to its diverse mechanism of action that has created many challenges to choosing appropriate treatment. Recent findings of the biology of breast cancer including the mechanisms of survival and metastasis, understanding the effective signaling pathways in tumor formation and modeling of cancer cell responses to the therapeutic approaches provided significant advances in BC treatment. In this regard, the use of phototherapy-based approaches such as photothermal therapy (PTT) would be an encouraging alternative for tumor suppression through activating autophagy or suppressing cell signaling that influences the cell cycle to induce cell death. Since autophagy has a dual opposite role consisting of pro-survival and growth inhibition in breast cancer microenvironments, the regulation of autophagy would be playing promising roles in the treatment of BC using PTT. This review updates the molecular mechanisms that PTT could evoke autophagic cell death in breast cancer. Moreover, this article provides insights into the biological effects of autophagy-targeted-PTT as a promising strategy for breast cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Autofagia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Fototerapia , Terapia Fototérmica , Microambiente Tumoral
11.
Int J Biol Macromol ; 207: 592-610, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35296439

RESUMO

Monoclonal antibodies (mAbs) as biological macromolecules have been remarked the large and growing pipline of the pharmaceutical market and also the most promising tool in modern medicine for cancer therapy. These therapeutic entities, which consist of whole mAbs, armed mAbs (i.e., antibody-toxin conjugates, antibody-drug conjugates, and antibody-radionuclide conjugates), and antibody fragments, mostly target tumor cells. However, due to intrinsic heterogeneity of cancer diseases, tumor cells targeting mAb have been encountered with difficulties in their unpredictable efficacy as well as variability in remission and durable clinical benefits among cancer patients. To address these pitfalls, the area has undergone two major evolutions with the intent of minimizing anti-drug responses and addressing limitations experienced with tumor cell-targeted therapies. As a novel hallmark of cancer, the tumor microenvironment (TME) is becoming the great importance of attention to develop innovative strategies based on therapeutic mAbs. Here, we underscore innovative strategies targeting TME by mAbs which destroy tumor cells indirectly through targeting vasculature system (e.g., anti-angiogenesis), immune system modulation (i.e., stimulation, suppression, and depletion), the targeting and blocking of stroma-based growth signals (e.g., cancer-associated fibroblasts), and targeting cancer stem cells, as well as, their effector mechanisms, clinical uses, and relevant mechanisms of resistance.


Assuntos
Antineoplásicos Imunológicos , Imunoconjugados , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
12.
Photodiagnosis Photodyn Ther ; 37: 102697, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34936918

RESUMO

Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Ouro/uso terapêutico , Nanopartículas/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia
13.
Nanomedicine (Lond) ; 16(24): 2155-2174, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34565179

RESUMO

Aim: Nanocomposites of graphene oxide (GO) loaded with PEGylated superparamagnetic iron oxide nanoparticles and grafted with methotrexate and stimuli-responsive linkers (GO-SPION-MTX) were developed for photothermal and chemotherapy of breast cancer. Methods: PEGylated SPIONs were synthesized and conjugated with chemotherapeutic targeting agent MTX, which were then loaded on GO to prepare GO-SPION-MTX nanocomposites. To evaluate the photothermal effect of the nanocomposites, they were examined in breast cancer cell lines with low doses of near-infrared (NIR) laser radiation with/without acetazolamide. Results: The GO-SPION-MTX nanocomposites were found to be internalized by the folate-receptor-positive cancer cells and induce high cytotoxicity on exposure to NIR laser rays. Conclusion: Our findings suggest that the GO-SPION-MTX nanocomposite can potentially be used as a multimodal nanomedicine/theranostic against breast cancer.


Assuntos
Neoplasias da Mama , Grafite , Nanopartículas de Magnetita , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Metotrexato
14.
Nanomedicine (Lond) ; 16(24): 2137-2154, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530630

RESUMO

Aims: The efficiency of mesoporous silica magnetic nanoparticles (MSMNP) as a targeted drug-delivery system was investigated. Methods: The superparamagnetic iron oxide nanoparticles (NP) were synthesized, coated with mesoporous silica and conjugated with polyethylene glycol and methotrexate. Next, 1-methyl-D-tryptophan was loaded into the prepared nanosystems (NS). They were characterized using transmission electron microscopy, scanning electron microscopy, dynamic light scattering, vibrating sample magnetometer, x-ray powder diffraction, Fourier transform-infrared spectroscopy and the Brunauer-Emmett-Teller method and their biological impacts on breast cancer cells were evaluated. Results: The prepared NSs displayed suitable properties and showed enhanced internalization by folate-receptor-expressing cells, exerting efficient cytotoxicity, which was further enhanced by the near-infrared radiation irradiation. Conclusion: On the basis of our findings, the engineered NS is a promising multifunctional nanomedicine/theranostic for solid tumors.


Assuntos
Neoplasias da Mama , Nanopartículas de Magnetita , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico , Humanos , Dióxido de Silício
15.
J Microencapsul ; 38(7-8): 472-485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511038

RESUMO

AIM: This research aims to develop potential therapeutic nanostructures (NSs) encapsulating metformin (MET) and erlotinib (ER) for combinational therapy in breast cancer. METHODS: The ER and MET, both were loaded on mesoporous silica magnetic nanoparticles conjugated with polyethylene glycol and methotrexate to achieve targeted NSs. The developed NSs were characterised using SEM, DLS, and FTIR. Afterward, MTT, Trypan blue, and DNA extraction assays were operated for biological evaluations in the 2D and 3D MCF-7 cells. RESULTS: Physicochemical approaches indicated the mean diameter of 69.4 nm ± 9.5 (PDI = 0.64), and neutral charge (2 mv) for the developed NSs. MET and ER-loaded NSs exhibited 62.56% ± 4.41 and 67.73% ± 3.03 drug release amount in pH = 5.4, respectively. MTT assay revealed that ER- and MET-loaded NSs had less metabolic activity (≈ 20%) in comparison with non-targeted NSs. CONCLUSION: Overall, our combined ER and MET-loaded targeted NSs result in a synergistic inhibitory impact on MCF-7 cells.


Assuntos
Nanopartículas de Magnetita , Metformina , Nanopartículas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Cloridrato de Erlotinib/farmacologia , Humanos , Células MCF-7 , Metformina/farmacologia , Porosidade , Dióxido de Silício
16.
Genes (Basel) ; 12(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356120

RESUMO

The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteína HMGA2/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Dendrímeros/metabolismo , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Proteína HMGA2/metabolismo , Humanos , Células MCF-7 , Metotrexato/farmacologia , Nylons/farmacologia , RNA Interferente Pequeno/genética
17.
Int J Biol Macromol ; 185: 664-678, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34224755

RESUMO

Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application. These intelligent delivery systems can deliver therapeutic agents that target cancerous tissue with minimal side effects and a wide therapeutic window. Overall, the linkage between the antibody and NPs is a critical subject and requires precise design and development. The attachment of antibody nanoconjugates (Ab-NCs) on the antigen surface shouldn't affect the function of the antibody-antigen binding. Also, the stability of the antibody nanoconjugates in blood circulation is concerned to avoid the release of drug in non-targeted regions and the possible for specific toxicity while disposal to the desired site. Here, we update the recent progress of Ab-NCs to improve early detection and cancer therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/imunologia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Detecção Precoce de Câncer , Humanos , Nanoconjugados , Neoplasias/imunologia , Patologia Molecular , Medicina de Precisão , Microambiente Tumoral/efeitos dos fármacos
18.
Life Sci ; 278: 119642, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033837

RESUMO

Tyrosine kinase inhibitors (TKIs), as an important class of chemotherapeutic drugs, induce apoptosis by altering the path of the cellular signal, resulting in cell death. However, some chemotherapeutic drugs have a limited therapeutic index and are usually destructive as well as unpredictable. In addition, the limitation of early diagnosis and inefficiency of some of the drugs in ordinary treatments lead to disease progression and decreases in the survival of cancer patients. For this purpose, various methods have been proposed, among them, nanomedicine has transpired as a modern approach for the treatment of multiple cancers. Over the last two decades, targeted therapy has been developed for cancer-specific cells/tissues and has rather restricted nonselective toxicities. In vivo and in vitro studies demonstrated nanoparticles (NPs), nano-scale drugs, and nano-carriers alone or in combination with other therapeutic, imaging, and theranostic agents would be applied as an effective approach targeting a diversity of malignant tissue. Therefore, using the latest advances in materials science and biomaterials, biology, it has happened that general diagnosis and treatment can be performed. In this review, we indicated the applications of theranostic nano-polymer and nano-liposome to TKIs delivery.


Assuntos
Nanopartículas/química , Polímeros/química , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores
19.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925632

RESUMO

The implication of 'theranostic' refers to targeting an identical receptor for diagnostic and therapeutic purposes, by the same radioligand, simultaneously or separately. In regard to extensive efforts, many considerable theranostic tracers have been developed in recent years. Emerging evidence strongly demonstrates the tendency of nuclear medicine towards therapies based on a diagnosis. This review is focused on the examples of targeted radiopharmaceuticals for the imaging and therapy of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Medicina de Precisão/métodos , Diagnóstico por Imagem/métodos , Humanos , Medicina Nuclear/métodos , Medicina Nuclear/tendências , Medicina de Precisão/tendências , Cintilografia/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Nanomedicina Teranóstica/métodos , Nanomedicina Teranóstica/tendências
20.
Int J Biol Macromol ; 175: 544-557, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571587

RESUMO

The growing need for treatment of the impaired bone tissue has resulted in the quest for the improvement of bone tissue regeneration strategies. Bone tissue engineering is trying to create bio-inspired systems with a coordinated combination of the cells, scaffolds, and bioactive factors to repair the damaged bone tissue. The scaffold provides a supportive matrix for cell growth, migration, and differentiation and also, acts as a delivery system for bioactive factors. Bioactive factors including a large group of cytokines, growth factors (GFs), peptides, and hormonal signals that regulate cellular behaviors. These factors stimulate osteogenic differentiation and proliferation of cells by activating the signaling cascades related to ossification and angiogenesis. GFs and bioactive peptides are significant parts of the bone tissue engineering systems. Besides, the use of the osteogenic potential of hormonal signals has been an attractive topic, particularly in osteoporosis-related bone defects. Due to the unstable nature of protein factors and non-specific effects of hormones, the engineering of scaffolds to the controlled delivery of these bioactive molecules has paramount importance. This review updates the growth factors, engineered peptides, and hormones that are used in bone tissue engineering systems. Also, discusses how these bioactive molecules may be linked to accelerating bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteogênese/fisiologia , Animais , Materiais Biocompatíveis/química , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA