Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Endocr Soc ; 8(1): bvad144, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38090229

RESUMO

We have recently proposed experimental design guidelines and areas of study for preclinical rodent models of gender-affirming hormone therapy in neuroscience. These guidelines also apply to any field subject to the influences of gonadal steroid hormones, including metabolism and growth, cancer, and physiology. This perspective briefly describes our suggestions for these fields. Studying the effects of exogenous steroid hormones will have translational benefits for the community. We also discuss the need for equitable practices for cisgender scientists who wish to implement these guidelines and engage with the community. It is necessary that community-informed practices are implemented in preclinical research to maximize the benefit to transgender, nonbinary, and/or gender diverse (TNG) healthcare, which is currently in jeopardy in the United States, Europe, and across the globe.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35863692

RESUMO

Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.


Assuntos
Hormônios , Pesquisa Translacional Biomédica , Humanos
3.
Nat Commun ; 10(1): 1221, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874546

RESUMO

Inherited and age-related retinal degenerative diseases cause progressive loss of rod and cone photoreceptors, leading to blindness, but spare downstream retinal neurons, which can be targeted for optogenetic therapy. However, optogenetic approaches have been limited by either low light sensitivity or slow kinetics, and lack adaptation to changes in ambient light, and not been shown to restore object vision. We find that the vertebrate medium wavelength cone opsin (MW-opsin) overcomes these limitations and supports vision in dim light. MW-opsin enables an otherwise blind retinitis pigmenotosa mouse to discriminate temporal and spatial light patterns displayed on a standard LCD computer tablet, displays adaption to changes in ambient light, and restores open-field novel object exploration under incidental room light. By contrast, rhodopsin, which is similar in sensitivity but slower in light response and has greater rundown, fails these tests. Thus, MW-opsin provides the speed, sensitivity and adaptation needed to restore patterned vision.


Assuntos
Cegueira/prevenção & controle , Opsinas dos Cones/genética , Terapia Genética/métodos , Optogenética/métodos , Degeneração Retiniana/terapia , Animais , Cegueira/etiologia , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Injeções Intravítreas , Queratinócitos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Rodopsina/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA