Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38001678

RESUMO

The phosphatases INPP4B and PTEN are tumor suppressors that are lost in nearly half of advanced metastatic cancers. The loss of PTEN in prostate epithelium initially leads to an upregulation of several tumor suppressors that slow the progression of prostate cancer in mouse models. We tested whether the loss of INPP4B elicits a similar compensatory response in prostate tissue and whether this response is distinct from the one caused by the loss of PTEN. Knockdown of INPP4B but not PTEN in human prostate cancer cell lines caused a decrease in EZH2 expression. In Inpp4b-/- mouse prostate epithelium, EZH2 levels were decreased, as were methylation levels of histone H3. In contrast, Ezh2 levels were increased in the prostates of Pten-/- male mice. Contrary to PTEN, there was a positive correlation between INPP4B and EZH2 expression in normal human prostates and early-stage prostate tumors. Analysis of single-cell transcriptomic data demonstrated that a subset of EZH2-positive cells expresses INPP4B or PTEN, but rarely both, consistent with their opposing correlation with EZH2 expression. Unlike PTEN, INPP4B did not affect the levels of SMAD4 protein expression or Pml mRNA expression. Like PTEN, p53 protein expression and phosphorylation of Akt in Inpp4b-/- murine prostates were elevated. Taken together, the loss of INPP4B in the prostate leads to overlapping and distinct changes in tumor suppressor and oncogenic downstream signaling.

3.
Commun Biol ; 4(1): 416, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772116

RESUMO

A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.


Assuntos
Síndrome Metabólica/terapia , Monoéster Fosfórico Hidrolases/genética , Substâncias Protetoras/farmacologia , Transdução de Sinais , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia
4.
PLoS One ; 15(5): e0233163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413098

RESUMO

Inositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN. INPP4B is highly expressed in testes, suggesting its role in testes development and physiology. The objective of this study was to determine whether Inpp4b deletion impacts testicular function in mice. In testis, Inpp4b expression was the highest in postmeiotic germ cells in both mice and men. The testes of Inpp4b knockout male mice were significantly smaller compared to the testes of wild-type (WT) males. Inpp4b-/- males produced fewer mature sperm cells compared to WT, and this difference increased with age and high fat diet (HFD). Reduction in early steroidogenic enzymes and luteinizing hormone (LH) receptor gene expression was detected, although androgen receptor (AR) protein level was similar in WT and Inpp4b-/- testes. Germ cell apoptosis was significantly increased in the knockout mice, while expression of meiotic marker γH2A.X was decreased. Our data demonstrate that INPP4B plays a role in maintenance of male germ cell differentiation and protects testis functions against deleterious effects of aging and high fat diet.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Apoptose/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Humanos , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA-Seq , Receptores Androgênicos/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Análise de Célula Única , Contagem de Espermatozoides , Testículo/crescimento & desenvolvimento
5.
Sci Rep ; 10(1): 3836, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123273

RESUMO

There is mounting evidence of androgen receptor signaling inducing genome instability and changing DNA repair capacity in prostate cancer cells. Expression of genes associated with base excision repair (BER) is increased with prostate cancer progression and correlates with poor prognosis. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are key enzymes in BER that elongate and degrade PAR polymers on target proteins. While PARP inhibitors have been tested in clinical trials and are a promising therapy for prostate cancer patients with TMPRSS2-ERG fusions and mutations in DNA repair genes, PARG inhibitors have not been evaluated. We show that PARG is a direct androgen receptor (AR) target gene. AR is recruited to the PARG locus and induces PARG expression. Androgen ablation combined with PARG inhibition synergistically reduces BER capacity in independently derived LNCaP and LAPC4 prostate cancer cell lines. A combination of PARG inhibition with androgen ablation or with the DNA damaging drug, temozolomide, significantly reduces cellular proliferation and increases DNA damage. PARG inhibition alters AR transcriptional output without changing AR protein levels. Thus, AR and PARG are engaged in reciprocal regulation suggesting that the success of androgen ablation therapy can be enhanced by PARG inhibition in prostate cancer patients.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Humanos , Masculino , Terapia de Alvo Molecular
6.
Biochimie ; 168: 241-250, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31756402

RESUMO

Prostate cancer (PCa) progression is characterized by increased expression and transcriptional activity of the androgen receptor (AR). In the advanced stages of prostate cancer, AR significantly upregulates the expression of genes involved in DNA repair. Upregulation of expression for base excision repair (BER) related genes is associated with poor patient survival. Thus, inhibition of the BER pathway may prove to be an effective therapy for prostate cancer. Using a high throughput BER capacity screening assay, we sought to identify BER inhibitors that can synergize with castration therapy. An FDA-approved drug library was screened to identify inhibitors of BER using a fluorescence-based assay suitable for HTS. A gel-based secondary assay confirmed the reduction of BER capacity by compounds identified in the primary screen. Five compounds were then selected for further testing in the independently derived, androgen-dependent prostate cancer cell lines, LNCaP and LAPC4, and in the nonmalignant prostate derived cell lines PNT1A and RWPE1. Further analysis led to the identification of a lead compound, natamycin, as an effective inhibitor of key BER enzymes DNA polymerase ß (pol ß) and DNA Ligase I (LIG I). Natamycin significantly inhibited proliferation of PCa cells in an androgen depleted environment at 1 µM concentration, however, growth inhibition did not occur with nonmalignant prostate cell lines, suggesting that BER inhibition may improve efficacy of the castration therapies.


Assuntos
Proliferação de Células/efeitos dos fármacos , DNA Ligase Dependente de ATP/antagonistas & inibidores , DNA Polimerase beta/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , Natamicina/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Linhagem Celular Tumoral , Bases de Dados de Produtos Farmacêuticos , Humanos , Masculino
7.
Oncogene ; 38(7): 1121-1135, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30228349

RESUMO

Activation and transcriptional reprogramming of AR in advanced prostate cancer frequently coincides with the loss of two tumor suppressors, INPP4B and PTEN, which are highly expressed in human and mouse prostate epithelium. While regulation of AR signaling by PTEN has been described by multiple groups, it is not known whether the loss of INPP4B affects AR activity. Using prostate cancer cell lines, we showed that INPP4B regulates AR transcriptional activity and the oncogenic signaling pathways Akt and PKC. Analysis of gene expression in prostate cancer patient cohorts showed a positive correlation between INPP4B expression and both AR mRNA levels and AR transcriptional output. Using an Inpp4b-/- mouse model, we demonstrated that INPP4B suppresses Akt and PKC signaling pathways and modulates AR transcriptional activity in normal mouse prostate. Remarkably, PTEN protein levels and phosphorylation of S380 were the same in Inpp4b-/- and WT males, suggesting that the observed changes were due exclusively to the loss of INPP4B. Our data show that INPP4B modulates AR activity in normal prostate and its loss contributes to the AR-dependent transcriptional profile in prostate cancer.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/genética , Próstata/patologia , Neoplasias da Próstata/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
8.
Methods Mol Biol ; 1786: 219-236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29786796

RESUMO

Steroid receptors are ligand activated transcription factors whose promoter specificity is regulated by a broad set of coregulators and pioneer factors. Corepressors and coactivators determine receptors' recruitment to specific regulatory elements and ultimately their transcriptional output. Using androgen receptor (AR) and NCOR1 corepressor as examples, this chapter describes experimental approaches to evaluate recruitment of steroid receptors and their coregulators to DNA and to determine coregulator contribution to the transcriptional output of the receptor. The chromatin immunoprecipitation assay, or ChIP, quantifies protein-DNA interaction in the cellular chromatin environment. Here, we describe a protocol to measure NCOR1 recruitment to AR binding sites of interest using ChIP. Gene Set Enrichment Analysis, GSEA, is a computational technique to determine whether a defined gene set is significantly represented among changes in gene expression between two biological groups. As an example, we examine whether AR repressed genes are significantly represented among genes altered by the NCOR1 knockout.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Receptores Androgênicos/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Ligação Proteica , Software
9.
Clin Cancer Res ; 22(15): 3937-49, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26968201

RESUMO

PURPOSE: Castration therapy in advanced prostate cancer eventually fails and leads to the development of castration-resistant prostate cancer (CRPC), which has no cure. Characteristic features of CRPC can be increased androgen receptor (AR) expression and altered transcriptional output. We investigated the expression of nuclear receptor corepressor 1 (NCOR1) in human prostate and prostate cancer and the role of NCOR1 in response to antiandrogens. EXPERIMENTAL DESIGN: NCOR1 protein levels were compared between matched normal prostate and prostate cancer in 409 patient samples. NCOR1 knockdown was used to investigate its effect on bicalutamide response in androgen-dependent prostate cancer cell lines and transcriptional changes associated with the loss of NCOR1. NCOR1 transcriptional signature was also examined in prostate cancer gene expression datasets. RESULTS: NCOR1 protein was detected in cytoplasm and nuclei of secretory epithelial cells in normal prostate. Both cytoplasmic and nuclear NCOR1 protein levels were lower in prostate cancer than in normal prostate. Prostate cancer metastases show significant decrease in NCOR1 transcriptional output. Inhibition of LNCaP cellular proliferation by bicalutamide requires NCOR1. NCOR1-regulated genes suppress cellular proliferation and mediate bicalutamide resistance. In the mouse, NCOR1 is required for bicalutamide-dependent regulation of a subset of the AR target genes. CONCLUSIONS: In summary, we demonstrated that NCOR1 function declines with prostate cancer progression. Reduction in NCOR1 levels causes bicalutamide resistance in LNCaP cells and compromises response to bicalutamide in mouse prostate in vivo Clin Cancer Res; 22(15); 3937-49. ©2016 AACR.


Assuntos
Expressão Gênica , Correpressor 1 de Receptor Nuclear/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Androgênios/farmacologia , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Correpressor 1 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/terapia , Interferência de RNA , Compostos de Tosil/farmacologia , Compostos de Tosil/uso terapêutico , Transcriptoma
10.
Cell Commun Signal ; 12: 61, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25248616

RESUMO

BACKGROUND: INPP4B and PTEN dual specificity phosphatases are frequently lost during progression of prostate cancer to metastatic disease. We and others have previously shown that loss of INPP4B expression correlates with poor prognosis in multiple malignancies and with metastatic spread in prostate cancer. RESULTS: We demonstrate that de novo expression of INPP4B in highly invasive human prostate carcinoma PC-3 cells suppresses their invasion both in vitro and in vivo. Using global gene expression analysis, we found that INPP4B regulates a number of genes associated with cell adhesion, the extracellular matrix, and the cytoskeleton. Importantly, de novo expressed INPP4B suppressed the proinflammatory chemokine IL-8 and induced PAK6. These genes were regulated in a reciprocal manner following downregulation of INPP4B in the independently derived INPP4B-positive LNCaP prostate cancer cell line. Inhibition of PI3K/Akt pathway, which is highly active in both PC-3 and LNCaP cells, did not reproduce INPP4B mediated suppression of IL-8 mRNA expression in either cell type. In contrast, inhibition of PKC signaling phenocopied INPP4B-mediated inhibitory effect on IL-8 in either prostate cancer cell line. In PC-3 cells, INPP4B overexpression caused a decline in the level of metastases associated BIRC5 protein, phosphorylation of PKC, and expression of the common PKC and IL-8 downstream target, COX-2. Reciprocally, COX-2 expression was increased in LNCaP cells following depletion of endogenous INPP4B. CONCLUSION: Taken together, we discovered that INPP4B is a novel suppressor of oncogenic PKC signaling, further emphasizing the role of INPP4B in maintaining normal physiology of the prostate epithelium and suppressing metastatic potential of prostate tumors.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína Quinase C/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-8/genética , Masculino , Maleimidas/farmacologia , Camundongos SCID , Invasividade Neoplásica , Monoéster Fosfórico Hidrolases/genética , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , Survivina , Quinases Ativadas por p21/genética
11.
PLoS One ; 9(4): e93464, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691413

RESUMO

Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol ß DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol ß then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Ataxia de Friedreich/genética , Expansão das Repetições de Trinucleotídeos , Alquilação/efeitos dos fármacos , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Replicação do DNA , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Instabilidade Genômica , Humanos , Íntrons , Conformação de Ácido Nucleico , Deleção de Sequência , Temozolomida
12.
Biochem Biophys Res Commun ; 440(2): 277-82, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24070612

RESUMO

The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Fosfatidato Fosfatase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Especificidade por Substrato
13.
Nat Commun ; 4: 1953, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23764525

RESUMO

The anti-fibrotic, vasodilatory and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases, and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodelling capacity of these peptide hormones is difficult to study in chronic settings because of their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin/insulin-like family peptide receptor 1 agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of relaxin/insulin-like family peptide receptor 1 activation.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , AMP Cíclico/metabolismo , Estabilidade de Medicamentos , Impedância Elétrica , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligação de Hidrogênio , Camundongos , Conformação Molecular , Dados de Sequência Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Relação Estrutura-Atividade , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
PLoS One ; 8(4): e60455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593223

RESUMO

Androgen receptor (AR) is commonly expressed in both the epithelium of normal mammary glands and in breast cancers. AR expression in breast cancers is independent of estrogen receptor alpha (ERα) status and is frequently associated with overexpression of the ERBB2 oncogene. AR signaling effects on breast cancer progression may depend on ERα and ERBB2 status. Up to 30% of human breast cancers are driven by overactive ERBB2 signaling and it is not clear whether AR expression affects any steps of tumor progression in this cohort of patients. To test this, we generated mammary specific Ar depleted mice (MARKO) by combining the floxed allele of Ar with the MMTV-cre transgene on an MMTV-NeuNT background and compared them to littermate MMTV-NeuNT, Ar(fl)/+ control females. Heterozygous MARKO females displayed reduced levels of AR in mammary glands with mosaic AR expression in ductal epithelium. The loss of AR dramatically accelerated the onset of MMTV-NeuNT tumors in female MARKO mice. In this report we show that accelerated MMTV-NeuNT-dependent tumorigenesis is due specifically to the loss of AR, as hormonal levels, estrogen and progesterone receptors expression, and MMTV-NeuNT expression were similar between MARKO and control groups. MMTV-NeuNT induced tumors in both cohorts displayed distinct loss of AR in addition to ERα, PR, and the pioneer factor FOXA1. Erbb3 mRNA levels were significantly elevated in tumors in comparison to normal mammary glands. Thus the loss of AR in mouse mammary epithelium accelerates malignant transformation rather than the rate of tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Receptor ErbB-2/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Alelos , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Oncogenes/genética , Especificidade de Órgãos , Ratos , Receptor ErbB-3/genética , Receptores Androgênicos/deficiência , Receptores de Progesterona/metabolismo , Transdução de Sinais
15.
Int J Biochem Cell Biol ; 45(4): 763-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23270728

RESUMO

The evidence that androgen blockade-resistant prostate cancer, termed castration resistant, remains androgen receptor (AR) dependent is compelling. AR is re-activated through multiple mechanisms including expression of constitutively active splice variants that lack hormone binding domains (HBDs). This highlights the need to develop therapies that target regions other than the HBD. Because the p160 coactivators interact most strongly with the amino-terminus of AR, we examined the consequences of disrupting this interaction. We identified two overlapping SRC-1 peptides that interact with AR, but not with progesterone receptor. These peptides reduce AR and AR variant AR-V7 dependent induction of an AR responsive reporter. Using mammalian two hybrid assays, we found that the peptides interrupt the AR/SRC-1, AR/SRC-2 and AR N/C interactions, but not SRC-1/CARM-1 interactions. Consistent with the SRC-1 dependence of induced, but not repressed genes, in LNCaP cells, the peptides inhibited hormone dependent induction of endogenous target genes including PSA and TMPRSS2, but did not block AR dependent repression of UGT2B17 or inhibit vitamin D receptor activity. Simultaneous detection of SRC-1 peptides and PSA by double immunofluorescence in transfected LNCaP cells clearly demonstrated a strong reduction in PSA levels in cells expressing the peptides. The peptides also inhibited the AR dependent expression of PSA in castration resistant C4-2 cells. Moreover they inhibited androgen dependent proliferation of LNCaP cells and proliferation of C4-2 cells in androgen depleted medium without affecting AR negative PC-3 cells. Thus, the p160 coactivator binding site is a novel potential therapeutic target to inhibit AR activity.


Assuntos
Androgênios/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Coativadores de Receptor Nuclear/metabolismo , Fragmentos de Peptídeos/farmacologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Células COS , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Masculino , Coativadores de Receptor Nuclear/química , Fragmentos de Peptídeos/química , Antígeno Prostático Específico/antagonistas & inibidores , Estrutura Terciária de Proteína , Receptores Androgênicos/genética , Ativação Transcricional/efeitos dos fármacos
16.
J Biomol Screen ; 18(6): 670-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23212924

RESUMO

The relaxin hormone is involved in a variety of biological functions, including female reproduction and parturition, as well as regulation of cardiovascular, renal, pulmonary, and hepatic functions. It regulates extracellular matrix remodeling, cell invasiveness, proliferation, differentiation, and overall tissue homeostasis. The G protein-coupled receptor (GPCR) relaxin family receptor 1 (RXFP1) is a cognate relaxin receptor that mainly signals through cyclic AMP second messenger. Although agonists of the receptor could have a wide range of pharmacologic utility, until now there have been no reported small-molecule agonists for relaxin receptors. Here, we report the development of a quantitative high-throughput platform for an RXFP1 agonist screen based on homogenous cell-based HTRF cyclic AMP (cAMP) assay technology. Two small molecules of similar structure were independently identified from a screen of more than 365 677 compounds. Neither compound showed activity in a counterscreen with HEK293T cells transfected with an unrelated GPCR vasopressin 1b receptor. These small-molecule agonists also demonstrated selectivity against the RXFP2 receptor, providing a basis for future medicinal chemistry optimization of selective relaxin receptor agonists.


Assuntos
AMP Cíclico/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inibidores
17.
World J Urol ; 30(3): 279-85, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21927983

RESUMO

The prostate gland is exquisitely sensitive to androgen receptor (AR) signaling. AR signaling is obligatory for prostate development and changes in AR levels, its ligands or shifts in AR mode of action are reflected in the physiology of the prostate. The AR is intimately linked to prostate cancer biology through the regulation of epithelial proliferation, suppression of apoptosis and the development of castration-resistant disease. Thus, AR is the primary therapeutic target in various prostate diseases such as BPH and cancer. Although some tumors lose AR expression, most retain the AR and have elevated levels and/or shifts in activity that are required for tumor progression and metastasis. New AR inhibitors currently in clinical trials with higher receptor affinity and specificity may improve prostate cancer patient outcome. Several events play an important role in initiation, primary tumor development and metastatic spread. Androgen receptor activity and promoter specificity change due to altered coregulator expression. Changes in epigenetic surveillance alter the AR cistrome. Both systemic and local inflammation increases with PCa progression affecting AR levels, activity, and requirement for ligand. Our current understanding of AR biology suggest that global androgen suppression may drive the development of castration-resistant disease and therefore the question remains: Does effective inhibition of AR activity mark the end of the road for PCa or only a sharp turn toward a different type of malignancy?


Assuntos
Progressão da Doença , Neoplasias da Próstata/fisiopatologia , Receptores Androgênicos/fisiologia , Transdução de Sinais/fisiologia , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptores Androgênicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Oncotarget ; 2(4): 321-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21487159

RESUMO

Dysregulation of phosphatidyl inositol signaling occurs in many cancers and other disorders. The lipid and protein phosphatase, PTEN (Phosphatase and Tensin homology protein on chromosome 10), is a known tumor suppressor whose function is frequently lost in various malignancies due to mutations in the coding region or genomic deletions. Recently, another lipid phosphatase, Inositol Polyphosphate 4-phosphatase type II (INPP4B), has emerged as a potential tumor suppressor in prostate, breast, and ovarian cancers and possibly in leukemia. We will review its structure and function, crosstalk with androgen receptor signaling, and regulation of INPP4B expression, as well as existing data about its role in cancer.


Assuntos
Neoplasias/etiologia , Fosfatidilinositol 3-Quinases/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Feminino , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Cancer Res ; 71(2): 572-82, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224358

RESUMO

Patients with metastatic prostate cancer who undergo androgen-ablation therapy invariably relapse and develop incurable castration-resistant disease. Activation of the prosurvival Akt pathway accompanies androgen ablation. We discovered that the androgen receptor induces the expression of the tumor suppressor inositol polyphosphate 4-phosphatase type II (INPP4B) but not PTEN in prostate cancer cells. Optimal induction of INPP4B by an androgen receptor required the expression of the transcriptional coactivator NCoR. INPP4B dephosphorylates phosphatidylinositol-3, 4-bisphosphate, which leads to reduced phosphorylation and activity of Akt. In support of a key role for INPP4B in Akt control, INPP4B depletion activated Akt and increased cellular proliferation. The clinical significance of INPP4B in androgen-dependent prostate cancers was determined in normal or primary tumor prostate tissues derived from radical prostatectomy specimens. In primary tumors, the expression of both INPP4B and PTEN was substantially reduced compared with normal tissue. Further, the decreased expression of INPP4B reduced the time to biochemical recurrence. Thus, androgen ablation can activate the Akt pathway via INPP4B downregulation, thereby mitigating the antitumor effects of androgen ablation. Our findings reinforce the concept that patients undergoing androgen ablation may benefit from Akt-targeting therapies.


Assuntos
Androgênios/farmacologia , Genes Supressores de Tumor , Monoéster Fosfórico Hidrolases/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Androgênios/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/metabolismo , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/deficiência , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/genética , Transfecção
20.
Endocr Relat Cancer ; 17(4): 1021-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861284

RESUMO

Relaxin (RLN) is a small peptide hormone expressed in several cancers of reproductive and endocrine organs. Increased expression of RLN in prostate cancer correlates with aggressive cancer. RLN G-protein-coupled receptor (RLN family peptide receptor 1, RXFP1) is expressed in both androgen receptor (AR)-positive and -negative prostate cancers as well as in prostate cancer cell lines. RLN behaves as a cell growth factor and increases invasiveness and proliferation of cancer cells in vitro and in vivo. The objective of this study is to determine whether downregulation of RXFP1 expression using small interfering RNA (siRNA) reduces cancer growth and metastasis in a xenograft model of prostate cancer. We used two well-characterized prostate adenocarcinoma cell lines, AR-positive LNCaP cells and AR-negative PC3 cells. The tumors were established in nude male mice by s.c. injections. Intratumoral injections of siRNAs loaded on biodegradable chitosan nanoparticles led to a downregulation of RXFP1 receptor expression and a dramatic reduction in tumor growth. In LNCaP tumors, the siRNA treatment led to an extensive necrosis. In PC3 xenografts treated with siRNA against RXFP1, the smaller tumor size was associated with the decreased cell proliferation and increased apoptosis. The downregulation of RXFP1 resulted in significant decrease in metastasis rate in PC3 tumors. Global transcriptional profiling of PC3 cells treated with RXFP1 siRNA revealed genes with significantly altered expression profiles previously shown to promote tumorigenesis, including the downregulation of MCAM, MUC1, ANGPTL4, GPI, and TSPAN8. Thus, the suppression of RLN/RXFP1 may have potential therapeutic benefits in prostate cancer.


Assuntos
Adenocarcinoma/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Receptores Acoplados a Proteínas G/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Análise de Variância , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica/terapia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , RNA Interferente Pequeno , Distribuição Aleatória , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Transfecção , Transplante Heterólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA