Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(18): 10595-10613, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977635

RESUMO

The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE-/-), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Senescência Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Homeostase , Pulmão/fisiopatologia , Proteína Homóloga a MRE11 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/genética , Fibrose Pulmonar/fisiopatologia , Receptor para Produtos Finais de Glicação Avançada/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
2.
EBioMedicine ; 20: 230-239, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28499927

RESUMO

Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s) involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1C326S), increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder.


Assuntos
Proteínas de Transporte de Cátions/genética , Hepcidinas/genética , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Pneumopatias/genética , Pneumopatias/metabolismo , Animais , Gasometria , Proteínas de Transporte de Cátions/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hepcidinas/metabolismo , Sobrecarga de Ferro/patologia , Peroxidação de Lipídeos , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Transgênicos , Oxigênio/metabolismo , Testes de Função Respiratória
3.
Cell Tissue Res ; 367(3): 537-550, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108847

RESUMO

Airway mucus obstruction is a hallmark of many chronic lung diseases including rare genetic disorders such as cystic fibrosis (CF) and primary ciliary dyskinesia, as well as common lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), which have emerged as a leading cause of morbidity and mortality worldwide. However, the role of excess airway mucus in the in vivo pathogenesis of these diseases remains poorly understood. The generation of mice with airway-specific overexpression of epithelial Na+ channels (ENaC), exhibiting airway surface dehydration (mucus hyperconcentration), impaired mucociliary clearance (MCC) and mucus plugging, led to a model of muco-obstructive lung disease that shares key features of CF and COPD. In this review, we summarize recent progress in the understanding of causes of impaired MCC and in vivo consequences of airway mucus obstruction that can be inferred from studies in ßENaC-overexpressing mice. These studies confirm that mucus hyperconcentration on airway surfaces plays a critical role in the pathophysiology of impaired MCC, mucus adhesion and airway plugging that cause airflow obstruction and provide a nidus for bacterial infection. In addition, these studies support the emerging concept that excess airway mucus per se, probably via several mechanisms including hypoxic epithelial necrosis, retention of inhaled irritants or allergens, and potential immunomodulatory effects, is a potent trigger of chronic airway inflammation and associated lung damage, even in the absence of bacterial infection. Finally, these studies suggest that improvement of mucus clearance may be a promising therapeutic strategy for a spectrum of muco-obstructive lung diseases.


Assuntos
Remodelação das Vias Aéreas , Inflamação/patologia , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Muco/metabolismo , Animais , Doença Crônica , Humanos , Inflamação/complicações , Pneumopatias/complicações
4.
J Allergy Clin Immunol ; 140(1): 190-203.e5, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27865862

RESUMO

BACKGROUND: Type 2 airway inflammation plays a central role in the pathogenesis of allergen-induced asthma, but the underlying mechanisms remain poorly understood. Recently, we demonstrated that reduced mucociliary clearance, a characteristic feature of asthma, produces spontaneous type 2 airway inflammation in juvenile ß-epithelial Na+ channel (Scnn1b)-transgenic (Tg) mice. OBJECTIVE: We sought to determine the role of impaired mucus clearance in the pathogenesis of allergen-induced type 2 airway inflammation and identify cellular sources of the signature cytokine IL-13. METHODS: We challenged juvenile Scnn1b-Tg and wild-type mice with Aspergillus fumigatus and house dust mite allergen and compared the effects on airway eosinophilia, type 2 cytokine levels, goblet cell metaplasia, and airway hyperresponsiveness. Furthermore, we determined cellular sources of IL-13 and effects of genetic deletion of the key type 2 signal-transducing molecule signal transducer and activator of transcription 6 (STAT6) and evaluated the effects of therapeutic improvement of mucus clearance. RESULTS: Reduced mucociliary allergen clearance exacerbated Stat6-dependent secretion of type 2 cytokines, airway eosinophilia, and airway hyperresponsiveness in juvenile Scnn1b-Tg mice. IL-13 levels were increased in airway epithelial cells, macrophages, type 2 innate lymphoid cells, and TH2 cells along with increased Il33 expression in the airway epithelium of Scnn1b-Tg mice. Treatment with the epithelial Na+ channel blocker amiloride, improving airway surface hydration and mucus clearance, reduced allergen-induced inflammation in Scnn1b-Tg mice. CONCLUSION: Our data support that impaired clearance of inhaled allergens triggering IL-13 production by multiple cell types in the airways plays an important role in the pathogenesis of type 2 airway inflammation and suggests therapeutic improvement of mucociliary clearance as a novel treatment strategy for children with allergen-induced asthma.


Assuntos
Asma/imunologia , Asma/fisiopatologia , Interleucina-13/imunologia , Depuração Mucociliar , Alérgenos/imunologia , Amilorida/farmacologia , Amilorida/uso terapêutico , Animais , Aspergillus fumigatus/imunologia , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Canais Epiteliais de Sódio/genética , Pulmão/citologia , Pulmão/imunologia , Camundongos Transgênicos , Pyroglyphidae/imunologia , Fator de Transcrição STAT6/genética , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
5.
Mol Cell Pediatr ; 2(1): 1, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26542291

RESUMO

BACKGROUND: MicroRNA (miRNA) and messenger RNA (mRNA) expression differs in cystic fibrosis (CF) versus non-CF bronchial epithelium. Here, the role of miRNA in basal regulation of the transcription factor ATF6 was investigated in bronchial epithelial cells in vitro and in vivo. METHODS: Using in silico analysis, miRNAs predicted to target the 3'untranslated region (3'UTR) of the human ATF6 mRNA were identified. RESULTS: Three of these miRNAs, miR-145, miR-221 and miR-494, were upregulated in F508del-CFTR homozygous CFBE41o- versus non-CF 16HBE14o- bronchial epithelial cells and also in F508del-CFTR homozygous or heterozygous CF (n = 8) versus non-CF (n = 9) bronchial brushings. ATF6 was experimentally validated as a molecular target of these miRNAs through the use of a luciferase reporter vector containing the full-length 3'UTR of ATF6. Expression of ATF6 was observed to be decreased in CF both in vivo and in vitro. miR-221 was also predicted to regulate murine ATF6, and its expression was significantly increased in native airway tissues of 6-week-old ßENaC-overexpressing transgenic mice with CF-like lung disease versus wild-type littermates. CONCLUSIONS: These results implicate miR-145, miR-221 and miR-494 in the regulation of ATF6 in CF bronchial epithelium, with miR-221 demonstrating structural and functional conservation between humans and mice. The altered miRNA expression evident in CF bronchial epithelial cells can affect expression of transcriptional regulators such as ATF6.

6.
Eur Respir J ; 46(5): 1350-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26160865

RESUMO

Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in ßENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, ßENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/imunologia , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Infiltração de Neutrófilos , Adulto , Animais , Brônquios/citologia , Líquido da Lavagem Broncoalveolar , Contagem de Células , Linhagem Celular , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Interleucina-8/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Adulto Jovem
7.
Am J Respir Crit Care Med ; 191(8): 902-13, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607238

RESUMO

RATIONALE: In many organs, hypoxic cell death triggers sterile neutrophilic inflammation via IL-1R signaling. Although hypoxia is common in airways from patients with cystic fibrosis (CF), its role in neutrophilic inflammation remains unknown. We recently demonstrated that hypoxic epithelial necrosis caused by airway mucus obstruction precedes neutrophilic inflammation in Scnn1b-transgenic (Scnn1b-Tg) mice with CF-like lung disease. OBJECTIVES: To determine the role of epithelial necrosis and IL-1R signaling in the development of neutrophilic airway inflammation, mucus obstruction, and structural lung damage in CF lung disease. METHODS: We used genetic deletion and pharmacologic inhibition of IL-1R in Scnn1b-Tg mice and determined effects on airway epithelial necrosis; levels of IL-1α, keratinocyte chemoattractant, and neutrophils in bronchoalveolar lavage; and mortality, mucus obstruction, and structural lung damage. Furthermore, we analyzed lung tissues from 21 patients with CF and chronic obstructive pulmonary disease and 19 control subjects for the presence of epithelial necrosis. MEASUREMENTS AND MAIN RESULTS: Lack of IL-1R had no effect on epithelial necrosis and elevated IL-1α, but abrogated airway neutrophilia and reduced mortality, mucus obstruction, and emphysema in Scnn1b-Tg mice. Treatment of adult Scnn1b-Tg mice with the IL-1R antagonist anakinra had protective effects on neutrophilic inflammation and emphysema. Numbers of necrotic airway epithelial cells were elevated and correlated with mucus obstruction in patients with CF and chronic obstructive pulmonary disease. CONCLUSIONS: Our results support an important role of hypoxic epithelial necrosis in the pathogenesis of neutrophilic inflammation independent of bacterial infection and suggest IL-1R as a novel target for antiinflammatory therapy in CF and potentially other mucoobstructive airway diseases.


Assuntos
Fibrose Cística/patologia , Epitélio/patologia , Hipóxia/patologia , Inflamação/patologia , Neutrófilos/patologia , Receptores de Interleucina-1/metabolismo , Adolescente , Adulto , Idoso , Animais , Fibrose Cística/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries/métodos , Pessoa de Meia-Idade , Necrose , Neutrófilos/metabolismo , Transdução de Sinais/fisiologia
8.
Am J Respir Cell Mol Biol ; 51(5): 709-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24828142

RESUMO

Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in ß-epithelial Na(+) channel-transgenic (ßENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in ßENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from ßENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from ßENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction.


Assuntos
Obstrução das Vias Respiratórias/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Metaloproteinase 12 da Matriz/imunologia , Muco/imunologia , Enfisema Pulmonar/imunologia , Obstrução das Vias Respiratórias/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Fibrose Cística/genética , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Desidratação/imunologia , Desidratação/metabolismo , Genômica , Macrófagos Alveolares/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Knockout , Muco/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/imunologia
9.
J Clin Invest ; 122(10): 3629-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945630

RESUMO

Asthma is a chronic condition with unknown pathogenesis, and recent evidence suggests that enhanced airway epithelial chloride (Cl-) secretion plays a role in the disease. However, the molecular mechanism underlying Cl- secretion and its relevance in asthma pathophysiology remain unknown. To determine the role of the solute carrier family 26, member 9 (SLC26A9) Cl- channel in asthma, we induced Th2-mediated inflammation via IL-13 treatment in wild-type and Slc26a9-deficient mice and compared the effects on airway ion transport, morphology, and mucus content. We found that IL-13 treatment increased Cl- secretion in the airways of wild-type but not Slc26a9-deficient mice. While IL-13-induced mucus overproduction was similar in both strains, treated Slc26a9-deficient mice exhibited airway mucus obstruction, which did not occur in wild-type controls. In a study involving healthy children and asthmatics, a polymorphism in the 3' UTR of SLC26A9 that reduced protein expression in vitro was associated with asthma. Our data demonstrate that the SLC26A9 Cl- channel is activated in airway inflammation and suggest that SLC26A9-mediated Cl- secretion is essential for preventing airway obstruction in allergic airway disease. These results indicate that SLC26A9 may serve as a therapeutic target for airway diseases associated with mucus plugging.


Assuntos
Obstrução das Vias Respiratórias/prevenção & controle , Antiporters/fisiologia , Asma/genética , Bronquite/fisiopatologia , Cloretos/metabolismo , Transporte de Íons/fisiologia , Muco/metabolismo , Traqueíte/fisiopatologia , Regiões 3' não Traduzidas , Obstrução das Vias Respiratórias/etiologia , Obstrução das Vias Respiratórias/fisiopatologia , Animais , Antiporters/deficiência , Antiporters/genética , Asma/fisiopatologia , Bronquite/induzido quimicamente , Bronquite/genética , Bronquite/imunologia , Cálcio/farmacologia , Criança , AMP Cíclico/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Predisposição Genética para Doença , Humanos , Interleucina-13/toxicidade , Pulmão/patologia , Camundongos , Camundongos Knockout , Transportadores de Sulfato , Células Th2/imunologia , Traqueíte/induzido quimicamente , Traqueíte/genética , Traqueíte/imunologia
10.
Development ; 137(7): 1107-16, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20215348

RESUMO

The RNA-binding protein Bicaudal C is an important regulator of embryonic development in C. elegans, Drosophila and Xenopus. In mouse, bicaudal C (Bicc1) mutants are characterized by the formation of fluid-filled cysts in the kidney and by expansion of epithelial ducts in liver and pancreas. This phenotype is reminiscent of human forms of polycystic kidney disease (PKD). Here, we now provide data that Bicc1 functions by modulating the expression of polycystin 2 (Pkd2), a member of the transient receptor potential (TRP) superfamily. Molecular analyses demonstrate that Bicc1 acts as a post-transcriptional regulator upstream of Pkd2. It regulates the stability of Pkd2 mRNA and its translation efficiency. Bicc1 antagonized the repressive activity of the miR-17 microRNA family on the 3'UTR of Pkd2 mRNA. This was substantiated in Xenopus, in which the pronephric defects of bicc1 knockdowns were rescued by reducing miR-17 activity. At the cellular level, Bicc1 protein is localized to cytoplasmic foci that are positive for the P-body markers GW182 and HEDLs. Based on these data, we propose that the kidney phenotype in Bicc1(-/-) mutant mice is caused by dysregulation of a microRNA-based translational control mechanism.


Assuntos
Proteínas de Transporte/metabolismo , Rim/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Epistasia Genética , Marcação de Genes , Humanos , Rim/embriologia , Rim/patologia , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Dados de Sequência Molecular , Fenótipo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Canais de Cátion TRPP/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA