Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Dermatol ; 32(11): 1935-1945, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37665193

RESUMO

Dowling Degos disease (DDD) is a rare autosomal dominant genodermatosis characterized by acquired, slowly progressive reticulated pigmented lesions primarily involving flexural skin areas. Mutations in KRT5, POGLUT-1 and POFUT-1 genes have been associated with DDD, and loss-of-function mutations in PSENEN, a subunit of the gamma-secretase complex, were found in patients presenting with DDD or DDD comorbid with hidradenitis suppurativa (HS). A nonsense mutation in NCSTN, another subunit of the gamma-secretase, was already described in a patient suffering from HS and DDD but whether NCSTN could be considered a novel gene for DDD is still debated. Here, we enrolled a four-generation family with HS and DDD. Through Whole Exome Sequencing (WES) we identified a novel nonsense mutation in the NCSTN gene in all the affected family members. To study the impact of this variant, we isolated outer root sheath cells from patients' hair follicles. We showed that this variant leads to a premature stop codon, activates a nonsense-mediated mRNA decay, and causes NCSTN haploinsufficiency in affected individuals. In fact, cells treated with gentamicin, a readthrough agent, had the NCSTN levels corrected. Moreover, we observed that this haploinsufficiency also affects other subunits of the gamma-secretase complex, possibly causing DDD. Our findings clearly support NCSTN as a novel DDD gene and suggest carefully investigating this co-occurrence in HS patients carrying a mutation in the NCSTN gene.


Assuntos
Hidradenite Supurativa , Papulose Atrófica Maligna , Humanos , Secretases da Proteína Precursora do Amiloide/genética , Códon sem Sentido , Hidradenite Supurativa/complicações , Hidradenite Supurativa/genética , Proteínas de Membrana/genética , Mutação , Fatores de Transcrição/genética
2.
J Cell Biochem ; 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37334850

RESUMO

Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.

3.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430525

RESUMO

Titanium is usually used in the manufacturing of metal implants due to its biocompatibility and high resistance to corrosion. A structural and functional connection between the living bone and the surface of the implant, a process called osseointegration, is mandatory for avoiding prolonged healing, infections, and tissue loss. Therefore, osseointegration is crucial for the success of the implantation procedure. Osseointegration is a process mediated by bone-matrix progenitor cells' proteins, named integrins. In this study, we used an in silico approach to assemble and test peptides that can be strategically used in sensitizing TiO2 implants in order to improve osseointegration. To do so, we downloaded PDB structures of integrins α5ß1, αvß3, and αIIbß3; their biological ligands; and low-cost proteins from the Protein Data Bank, and then we performed a primary (integrin-protein) docking analysis. Furthermore, we modeled complex peptides with the potential to bind to the TiO2 surface on the implant, as well as integrins in the bone-matrix progenitor cells. Then we performed a secondary (integrin-peptide) docking analysis. The ten most promising integrin-peptide docking results were further verified by molecular dynamics (MD) simulations. We recognized 82 peptides with great potential to bind the integrins, and therefore to be used in coating TiO2 implants. Among them, peptides 1 (GHTHYHAVRTQTTGR), 3 (RKLPDATGR), and 8 (GHTHYHAVRTQTLKA) showed the highest binding stability during the MD simulations. This bioinformatics approach saves time and more effectively directs in vitro studies.


Assuntos
Materiais Revestidos Biocompatíveis , Titânio , Materiais Revestidos Biocompatíveis/química , Titânio/farmacologia , Titânio/química , Peptídeos , Integrinas
4.
Rev. Soc. Bras. Med. Trop ; 55: e0263, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1407004

RESUMO

ABSTRACT Zika virus (ZIKV) is an enveloped, single-stranded RNA arbovirus belonging to the genus Flavivirus. It was first isolated from a sentinel monkey in Uganda in 1947. More recently, ZIKV has undergone rapid geographic expansion and has been responsible for outbreaks in Southeast Asia, the Pacific Islands, and America. In this review, we have highlighted the influence of viral genetic variants on ZIKV pathogenesis. Two major ZIKV genotypes (African and Asian) have been identified. The Asian genotype is subdivided into Southwest Asia, Pacific Island, and American strains, and is responsible for most outbreaks. Non-synonymous mutations in ZIKV proteins C, prM, E, NS1, NS2A, NS2B, NS3, and NS4B were found to have a higher prevalence and association with virulent strains of the Asian genotype. Consequently, the Asian genotype appears to have acquired higher cellular permissiveness, tissue persistence, and viral tropism in human neural cells. Therefore, mutations in specific coding regions of the Asian genotype may enhance ZIKV infectivity. Considering that mutations in the genomes of emerging viruses may lead to new virulent variants in humans, there is a potential for the re-emergence of new ZIKV cases in the future.

5.
J Acquir Immune Defic Syndr ; 88(3): 322-327, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34267056

RESUMO

BACKGROUND: Antiretroviral therapy (ART) is an important hallmark of HIV-1 treatment, enabling viral load suppression to undetectable levels and CD4+ T-cell recovery. However, some individuals do not recover the CD4+ T-cell count to normal levels, despite viral suppression. We hypothesize that variation in genes involved in extrinsic apoptosis pathways may influence interindividual immune recovery during ART. METHODS: We assessed clinical-epidemiological variables and the allelic/genotypic distribution of functional single nucleotide polymorphisms in genes involved in extrinsic apoptosis pathways (TNFRSF1A: rs1800692 and rs767455; TNFAIP3: rs2270926; NFKBIA: rs8904; and TNF-α: rs1800629) and their relationship with immune recovery in ART-treated (1 year) HIV-1-infected individuals. We enrolled 155 HIV-1-infected individuals, with 102 individuals showing immunological success and 53 with immunological failure. RESULTS: Through univariate analysis, we observed that the male sex (60.4%, P = 0.002) showed a higher median of age at treatment onset (34.8 years, P = 0.034) and higher time until virological suppression (6 months, P = 0.035), both risk factors for immune failure. Survival analysis revealed that individuals who started ART treatment with CD4+ T-cell count <200 cells/mm3 took a longer time to immunological recovery (median time = 27 months, P = 0.029). ART containing zidovudine also was associated with immune recovery in univariate e multivariate analysis. Variants in TNFRSF1A (rs767455: T and TT; rs1800692-rs767455: T-T combination) and NFKBIA (rs8904: A) genes were associated with immune failure, whereas NFKBIA (rs8904: GA) and TNF-α (rs1800629: GA) were with CD4+ T-cell recovery. CONCLUSIONS: Clinical-epidemiological variants in genes involved in extrinsic apoptosis pathways might influence the CD4+ T-cell immune recovery.


Assuntos
Terapia Antirretroviral de Alta Atividade/efeitos adversos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Soropositividade para HIV , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Carga Viral , Adulto Jovem
6.
Infect Genet Evol ; 92: 104837, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813078

RESUMO

Proinflammatory microenvironmental is crucial for the Human Immunodeficiency Virus Type 1 (HIV-1) pathogenesis. The viral glycoprotein 120 (gp120) must interact with the CD4+ T cell chemokine receptor (CCR5) and a co-receptor C-X-C chemokine receptor type 4 (CXCR4) to let the virus entry into the host cells. However, the interaction of the viral particle with other cell surface receptors is mandatory for its attachment and subsequently entry. Tumor Necrosis Factor receptor type I (TNFR1), type II (TNFR2) and Fas are a superfamily of transmembrane proteins involved in canonical inflammatory pathway and cell death by apoptosis as responses against viral pathogens. In our study, we performed an in silico evaluation of the molecular interactions between viral protein gp120 and TNF receptors (TNFR1, TNFR2 and Fas). Protein structures were retrieved from Protein Databank (PDB), and Molecular Docking and dynamics were performed using ClusPro 2.0 server and GROMACS software, respectively. We observed that gp120 is able to bind TNFR1, TNFR2 and Fas receptors, although only the TNFR2-gp120 complex demonstrated to produce a stable and durable binding. Our findings suggest that gp120 may act as an agonist to TNF-α and also function as an attachment factor in HIV-1 entry process. These molecular interaction by gp120 may be the key to HIV-1 immunopathogenesis. In conclusion, gp120 may stimulate pro-inflammatory and apoptotic signaling transduction pathways mediated by TNFR2 and may act as an attachment factor retaining HIV-1 viral particles on the host cell surface.


Assuntos
Glicoproteínas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/patogenicidade , Receptores do Fator de Necrose Tumoral/metabolismo , Apoptose/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/virologia , Simulação de Acoplamento Molecular/métodos , Transdução de Sinais/fisiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA