Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682668

RESUMO

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/enzimologia , Cristalografia por Raios X/métodos , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/química , Antibacterianos/farmacologia , Humanos , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
2.
J Colloid Interface Sci ; 522: 104-110, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29579561

RESUMO

Self-assembly of nanoparticles into superlattices can be used to create hierarchically structured materials with tailored functions. We have used the surface sensitive quartz crystal microbalance with dissipation monitoring (QCM-D) technique in combination with video microscopy (VM) to obtain time-resolved information on the mass increase and rheological properties of evaporation-induced self-assembly of nanocubes. We have recorded the frequency and dissipation shifts during growth and densification of superlattices formed by self-assembly of oleic acid capped, truncated iron oxide nanocubes and analyzed the time-resolved QCM-D data using a Kelvin-Voigt viscoelastic model. We show that the nanoparticles first assemble into solvent-containing arrays dominated by a viscous response followed by a solvent-releasing step that results in the formation of rigid and well-ordered superlattices. Our findings demonstrate that QCM-D can be successfully used to follow self-assembly and assist in the design of optimized routes to produce well-ordered superlattices.

3.
Langmuir ; 33(1): 303-310, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27991791

RESUMO

We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model. The growth of each mesocrystal depends only on the number of nanoparticles within the accessible region irrespective of the relative time of formation. The mass of the dried mesocrystals estimated from the analysis of the bandwidth-shift-to-frequency-shift ratio correlates well with the total mass of the oleate-coated nanoparticles in the deposited dispersion drop.

4.
Langmuir ; 31(45): 12537-43, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26509355

RESUMO

We demonstrate that spatial confinement can be used to control the orientational and translational order of cubic nanoparticles. For this purpose we have combined X-ray scattering and scanning electron microscopy to study the ordering of iron oxide nanocubes that have self-assembled from toluene-based dispersions in nanofluidic channels. An analysis of scattering vector components with directions parallel and perpendicular to the slit walls shows that the confining walls induce a preferential parallel alignment of the nanocube (100) faces. Moreover, slit wall separations that are commensurate with an integer multiple of the edge length of the oleic acid-capped nanocubes result in a more pronounced translational order of the self-assembled arrays compared to incommensurate confinement. These results show that the confined assembly of anisotropic nanocrystals is a promising route to nanoscale devices with tunable anisotropic properties.

5.
Sci Technol Adv Mater ; 15(5): 055010, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877722

RESUMO

Here we demonstrate how monodisperse iron oxide nanocubes and nanospheres with average sizes between 5 and 27 nm can be synthesized by thermal decomposition. The relative importance of the purity of the reactants, the ratio of oleic acid and sodium oleate, the maximum temperature, and the rate of temperature increase, on robust and reproducible size and shape-selective iron oxide nanoparticle synthesis are identified and discussed. The synthesis conditions that generate highly monodisperse iron oxide nanocubes suitable for producing large ordered arrays, or mesocrystals are described in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA