Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transplant Proc ; 53(9): 2721-2723, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600758

RESUMO

BACKGROUND: To analyze the relationship of the antigen carbohydrate 125 (CA125) biomarker with the cellular rejection of the heart graft during the first year after transplantation. METHODS: Retrospective study of consecutive heart transplant (HTx) patients for 1.5 years. The total number of patients included in the study was 23 with a total of 103 follow-ups. In all patients, CA125 was determined before HTx and determined post-HTx in every follow-up. These were performed during months 1, 2, 4, 6, 9, and 12. Endomyocardial biopsy was performed in all revisions to assess the degree of graft rejection in the pathologic study. The biopsy results were grouped into 1. absence of rejection and 2. presence of some degree of rejection. RESULTS: The mean pretransplant CA125 value presented a median of 120 U/mL with an interquartile range of 28.8 U/mL. One month after transplantation, the value was reduced by 20% and at 2 months by 81%. In subsequent reviews, plasma values were always between 10 and 20 U/mL. When comparing the values by periods and according to the presence or absence of rejection, no significant differences were found other than a slight elevation at the 6-month checkup (P = .03) but without clinical relevance, because the CA125 value was slightly higher in biopsy results without rejection. CONCLUSION: The rapid reduction of CA125 corroborates its usefulness as a marker of congestion in heart failure. This biomarker is not useful for predicting rejection. However, in cases of very severe rejections that occurred with systemic congestion, it could be raised. It would be necessary to corroborate this hypothesis in a larger study with a higher number of severe rejections.


Assuntos
Transplante de Coração , Transplante de Células-Tronco Hematopoéticas , Biomarcadores , Biópsia , Carboidratos , Rejeição de Enxerto/diagnóstico , Transplante de Coração/efeitos adversos , Humanos , Estudos Retrospectivos
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3234-3246, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006152

RESUMO

Circulating histones have been proposed as targets for therapy in sepsis and hyperinflammatory symptoms. However, the proposed strategies have failed in clinical trials. Although different mechanisms for histone-related cytotoxicity are being explored, those mediated by circulating histones are not fully understood. Extracellular histones induce endothelial cell death, thereby contributing to the pathogenesis of complex diseases such as sepsis and septic shock. Therefore, the comprehension of cellular responses triggered by histones is capital to design effective therapeutic strategies. Here we report how extracellular histones induce autophagy and apoptosis in a dose-dependent manner in cultured human endothelial cells. In addition, we describe how histones regulate these pathways via Sestrin2/AMPK/ULK1-mTOR and AKT/mTOR. Furthermore, we evaluate the effect of Toll-like receptors in mediating autophagy and apoptosis demonstrating how TLR inhibitors do not prevent apoptosis and/or autophagy induced by histones. Our results confirm that histones and autophagic pathways can be considered as novel targets to design therapeutic strategies in endothelial damage.


Assuntos
Histonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Ann Transplant ; 22: 285-295, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28484204

RESUMO

BACKGROUND Cardioplegic arrest is a common procedure for many types of cardiac surgery, and different formulations have been proposed to enhance its cardio-protective effect. Hydrogen sulfide is an important signaling molecule that has cardio-protective properties. We therefore studied the cardio-protective effect of hydrogen sulfide in cardiac cell culture and its potential therapeutic use in combination with cardioplegia formulations. MATERIAL AND METHODS We added hydrogen sulfide donor GYY4137 to HL-1 cells to study its protective effect in nutrient starved conditions. In addition, we tested the potential use of GYY4137 when it is added into two different cardioplegia formulations: Cardi-Braun® solution and del Nido solution in an ex vivo Langendorff perfused rat hearts model. RESULTS We observed that eight-hour pre-treatment with GYY4137 significantly suppressed apoptosis in nutrient-starved HL-1 cells (28% less compared to untreated cells; p<0.05), maintained ATP content, and reduced protein synthesis. In ex vivo experiments, Cardi-Braun® and del Nido cardioplegia solutions supplemented with GYY4137 significantly reduced the pro-apoptotic protein caspase-3 content and preserved ATP content. Furthermore, GYY4137 supplemented cardioplegia solutions decreased the S-(5-adenosyl)-L-methionine/S-(adenosyl)-L-homocysteine ratio, reducing the oxidative stress in cardiac tissue. Finally, heart beating analysis revealed the preservation of the inter-beat interval and the heart rate in del Nido cardioplegia solution supplemented with GYY4137. CONCLUSIONS GYY4137 preconditioning preserved energetic state during starved conditions, attenuating the cardiomyocytes apoptosis in vitro. The addition of GYY4137 to cardioplegia solutions prevented apoptosis, ATP consumption, and oxidative stress in perfused rat hearts, restoring its electrophysiological status after cardiac arrest. These findings suggested that GYY4137 sulfide donor may improve the cardioplegia solution performance during cardiac surgery.


Assuntos
Apoptose/efeitos dos fármacos , Parada Cardíaca/metabolismo , Coração/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Soluções Cardioplégicas , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Masculino , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar
4.
PLoS One ; 10(12): e0144273, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26642043

RESUMO

GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Ligação ao GTP/genética , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Glicólise/genética , Células HEK293 , Humanos , Canais Iônicos/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos , Fosforilação Oxidativa , RNA de Transferência de Lisina/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Proteína Desacopladora 2
5.
PLoS One ; 8(12): e83318, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349488

RESUMO

Two major mechanisms of intracellular protein degradation, autophagy and the ubiquitin-proteasome pathway, operate in mammalian cells. PTEN, which is frequently mutated in glioblastomas, is a tumor suppressor gene that encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase class I/AKT/mTOR pathway, which is a key regulator of autophagy. Here, we investigated in U87MG human glioma cells the role of PTEN in the regulation of autophagy and the ubiquitin-proteasome pathway, because both are functionally linked and are relevant in cancer progression. Since U87MG glioma cells lack a functional PTEN, we used stable clones that express, under the control of a tetracycline-inducible system (Tet-on), wild-type PTEN and two of its mutants, G129E-PTEN and C124S-PTEN, which, respectively, lack the lipid phosphatase activity only and both the lipid and the protein phosphatase activities of this protein. Expression of PTEN in U87MG glioma cells decreased proteasome activity and also reduced protein ubiquitination. On the contrary, expression of PTEN increased the autophagic flux and the lysosomal mass. Interestingly, and although PTEN negatively regulates the phosphatidylinositol 3-kinase class I/AKT/mTOR signaling pathway by its lipid phosphatase activity, both effects in U87MG cells were independent of this activity. These results suggest a new mTOR-independent signaling pathway by which PTEN can regulate in opposite directions the main mechanisms of intracellular protein degradation.


Assuntos
Autofagia , Glioma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidato Fosfatase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Humanos , Lisossomos/genética , Lisossomos/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidato Fosfatase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/genética
6.
Hum Mol Genet ; 17(5): 667-78, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18029386

RESUMO

Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin-malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin-malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapies.


Assuntos
Proteínas de Transporte/genética , Glicogênio/biossíntese , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Quinases Ativadas por AMP , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares , Escherichia coli/genética , Glicogênio/análise , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Estatística como Assunto , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases , Ubiquitinação
7.
J Biol Chem ; 278(31): 28378-87, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12730230

RESUMO

The Escherichia coli MnmE protein is a three-domain protein that exhibits a very high intrinsic GTPase activity and low affinity for GTP and GDP. The middle GTPase domain, when isolated, conserves the high intrinsic GTPase activity of the entire protein, and the C-terminal domain contains the only cysteine residue present in the molecule. MnmE is an evolutionarily conserved protein that, in E. coli, has been shown to control the modification of the uridine at the wobble position of certain tRNAs. Here we examine the biochemical and functional consequences of altering amino acid residues within conserved motifs of the GTPase and C-terminal domains of MnmE. Our results indicate that both domains are essential for the MnmE tRNA modifying function, which requires effective hydrolysis of GTP. Thus, it is shown for the first time that a confirmed defect in the GTP hydrolase activity of MnmE results in the lack of its tRNA modifying function. Moreover, the mutational analysis of the GTPase domain indicates that MnmE is closer to classical GTPases than to GTP-specific metabolic enzymes. Therefore, we propose that MnmE uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the C-terminal Cys may function as a catalytic residue. We demonstrate that point mutations abolishing the tRNA modifying function of MnmE confer synthetic lethality, which stresses the importance of this function in the mRNA decoding process.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Cisteína , Escherichia coli/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/fisiologia , RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/química , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/metabolismo , Hidrólise , Mutagênese Sítio-Dirigida , Nucleotídeos/farmacologia , Fragmentos de Peptídeos/química , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Microbiology (Reading) ; 148(Pt 5): 1329-1334, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11988506

RESUMO

Transglutaminase activity, which forms the interpeptidic cross-link N(epsilon)-(gamma-glutamyl)-lysine, was demonstrated in cell-free extracts of Saccharomyces cerevisiae by incorporation of [(14)C]lysine into an exogenous acceptor, N,N'-dimethylcasein. Higher levels of the activity were present in the cell wall, which also contained endogenous acceptors. The enzyme activity in the wall was inhibited by cystamine, a known inhibitor of transglutaminase, and by EDTA, indicating a cation-dependent activity. After the endogenous wall acceptors were labelled radioactively by transglutaminase, extraction with SDS solubilized about 50% of the total radioactivity, while Zymolyase and chitinase each released a further 3%. The proteins solubilized by SDS had molecular masses less than 50 kDa, whereas the material released by Zymolyase or chitinase had molecular masses greater than 180 kDa, suggesting a precursor-product relationship. Cystamine inhibited the growth of several strains of S. cerevisiae. Treated cells showed increased sensitivity to Zymolyase and appeared as protoplasts, indicating gross alterations in the cell wall. These data suggest that transglutaminase may be involved in the formation of covalent cross-links between wall proteins during wall construction.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Transglutaminases/metabolismo , Extratos Celulares , Parede Celular/efeitos dos fármacos , Cistamina/farmacologia , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Lisina/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transglutaminases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA