Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Nat Med ; 30(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454126

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy is an emerging strategy to improve treatment outcomes for recurrent high-grade glioma, a cancer that responds poorly to current therapies. Here we report a completed phase I trial evaluating IL-13Rα2-targeted CAR-T cells in 65 patients with recurrent high-grade glioma, the majority being recurrent glioblastoma (rGBM). Primary objectives were safety and feasibility, maximum tolerated dose/maximum feasible dose and a recommended phase 2 dose plan. Secondary objectives included overall survival, disease response, cytokine dynamics and tumor immune contexture biomarkers. This trial evolved to evaluate three routes of locoregional T cell administration (intratumoral (ICT), intraventricular (ICV) and dual ICT/ICV) and two manufacturing platforms, culminating in arm 5, which utilized dual ICT/ICV delivery and an optimized manufacturing process. Locoregional CAR-T cell administration was feasible and well tolerated, and as there were no dose-limiting toxicities across all arms, a maximum tolerated dose was not determined. Probable treatment-related grade 3+ toxicities were one grade 3 encephalopathy and one grade 3 ataxia. A clinical maximum feasible dose of 200 × 106 CAR-T cells per infusion cycle was achieved for arm 5; however, other arms either did not test or achieve this dose due to manufacturing feasibility. A recommended phase 2 dose will be refined in future studies based on data from this trial. Stable disease or better was achieved in 50% (29/58) of patients, with two partial responses, one complete response and a second complete response after additional CAR-T cycles off protocol. For rGBM, median overall survival for all patients was 7.7 months and for arm 5 was 10.2 months. Central nervous system increases in inflammatory cytokines, including IFNγ, CXCL9 and CXCL10, were associated with CAR-T cell administration and bioactivity. Pretreatment intratumoral CD3 T cell levels were positively associated with survival. These findings demonstrate that locoregional IL-13Rα2-targeted CAR-T therapy is safe with promising clinical activity in a subset of patients. ClinicalTrials.gov Identifier: NCT02208362 .


Assuntos
Glioblastoma , Glioma , Receptores de Antígenos Quiméricos , Humanos , Recidiva Local de Neoplasia , Glioma/terapia , Linfócitos T , Glioblastoma/terapia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos
3.
Front Immunol ; 15: 1342625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449858

RESUMO

Introduction: Despite aggressive standard-of-care therapy, including surgery, radiation, and chemotherapy, glioblastoma recurrence is almost inevitable and uniformly lethal. Activation of glioma-intrinsic Wnt/ß-catenin signaling is associated with a poor prognosis and the proliferation of glioma stem-like cells, leading to malignant transformation and tumor progression. Impressive results in a subset of cancers have been obtained using immunotherapies including anti-CTLA4, anti-PD-1, and anti-PD-L1 or chimeric antigen receptor (CAR) T cell therapies. However, the heterogeneity of tumors, low mutational burden, single antigen targeting, and associated antigen escape contribute to non-responsiveness and potential tumor recurrence despite these therapeutic efforts. In the current study, we determined the effects of the small molecule, highly specific Wnt/CBP (CREB Binding Protein)/ß-catenin antagonist ICG-001, on glioma tumor cells and the tumor microenvironment (TME)-including its effect on immune cell infiltration, blood vessel decompression, and metabolic changes. Methods: Using multiple glioma patient-derived xenografts cell lines and murine tumors (GL261, K-Luc), we demonstrated in vitro cytostatic effects and a switch from proliferation to differentiation after treatment with ICG-001. Results: In these glioma cell lines, we further demonstrated that ICG-001 downregulated the CBP/ß-catenin target gene Survivin/BIRC5-a hallmark of Wnt/CBP/ß-catenin inhibition. We found that in a syngeneic mouse model of glioma (K-luc), ICG-001 treatment enhanced tumor infiltration by CD3+ and CD8+ cells with increased expression of the vascular endothelial marker CD31 (PECAM-1). We also observed differential gene expression and induced immune cell infiltration in tumors pretreated with ICG-001 and then treated with CAR T cells as compared with single treatment groups or when ICG-001 treatment was administered after CAR T cell therapy. Discussion: We conclude that specific Wnt/CBP/ß-catenin antagonism results in pleotropic changes in the glioma TME, including glioma stem cell differentiation, modulation of the stroma, and immune cell activation and recruitment, thereby suggesting a possible role for enhancing immunotherapy in glioma patients.


Assuntos
Glioma , beta Catenina , Humanos , Animais , Camundongos , Via de Sinalização Wnt , Recidiva Local de Neoplasia , Imunoterapia , Glioma/terapia , Microambiente Tumoral
4.
Cancer Res Commun ; 3(1): 66-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968221

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand-based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)-containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. Significance: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB-based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings.


Assuntos
Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Imunoterapia Adotiva/métodos , Subunidade alfa2 de Receptor de Interleucina-13/genética , Interleucina-13/genética , Antígenos CD28/genética , Ligantes , Glioblastoma/terapia , Modelos Animais de Doenças
5.
Proc Natl Acad Sci U S A ; 119(33): e2112006119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939683

RESUMO

IL13Rα2 is an attractive target due to its overexpression in a variety of cancers and rare expression in healthy tissue, motivating expansion of interleukin 13 (IL13)-based chimeric antigen receptor (CAR) T cell therapy from glioblastoma into systemic malignancies. IL13Rα1, the other binding partner of IL13, is ubiquitously expressed in healthy tissue, raising concerns about the therapeutic window of systemic administration. IL13 mutants with diminished binding affinity to IL13Rα1 were previously generated by structure-guided protein engineering. In this study, two such variants, termed C4 and D7, are characterized for their ability to mediate IL13Rα2-specific response as binding domains for CAR T cells. Despite IL13Rα1 and IL13Rα2 sharing similar binding interfaces on IL13, mutations to IL13 that decrease binding affinity for IL13Rα1 did not drastically change binding affinity for IL13Rα2. Micromolar affinity to IL13Rα1 was sufficient to pacify IL13-mutein CAR T cells in the presence of IL13Rα1-overexpressing cells in vitro. Interestingly, effector activity of D7 CAR T cells, but not C4 CAR T cells, was demonstrated when cocultured with IL13Rα1/IL4Rα-coexpressing cancer cells. While low-affinity interactions with IL13Rα1 did not result in observable toxicities in mice, in vivo biodistribution studies demonstrated that C4 and D7 CAR T cells were better able to traffic away from IL13Rα1+ lung tissue than were wild-type (WT) CAR T cells. These results demonstrate the utility of structure-guided engineering of ligand-based binding domains with appropriate selectivity while validating IL13-mutein CARs with improved selectivity for application to systemic IL13Rα2-expressing malignancies.


Assuntos
Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13 , Interleucina-13 , Neoplasias , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Interleucina-13/genética , Interleucina-13/farmacocinética , Interleucina-13/uso terapêutico , Subunidade alfa2 de Receptor de Interleucina-13/antagonistas & inibidores , Camundongos , Neoplasias/terapia , Engenharia de Proteínas , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728874

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells engineered to recognize and target tumor associated antigens have made a profound impact on the quality of life for many patients with cancer. However, tumor heterogeneity and intratumoral immune suppression reduce the efficacy of this approach, allowing for tumor cells devoid of the target antigen to seed disease recurrence. Here, we address the complexity of tumor heterogeneity by developing a universal CAR. METHOD: We constructed a universal Fabrack-CAR with an extracellular domain composed of the non-tumor targeted, cyclic, twelve residue meditope peptide that binds specifically to an engineered binding pocket within the Fab arm of monoclonal antibodies (mAbs). As this site is readily grafted onto therapeutic mAbs, the antigen specificity of these universal Fabrack-CAR T cells is simply conferred by administering mAbs with specificity to the heterogeneous tumor. RESULTS: Using in vitro and in vivo studies with multiple meditope-engineered mAbs, we show the feasibility, specificity, and robustness of this approach. These studies demonstrate antigen- and antibody-specific T cell activation, proliferation, and IFNγ production, selective killing of target cells in a mixed population, and tumor regression in animal models. CONCLUSION: Collectively, these findings support the feasibility of this universal Fabrack-CAR T cell approach and provide the rationale for future clinical use in cancer immunotherapy.


Assuntos
Imunoterapia Adotiva , Neoplasias , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Neoplasias/terapia , Qualidade de Vida , Receptores de Antígenos de Linfócitos T , Linfócitos T
7.
Cell Stem Cell ; 29(4): 515-527.e8, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35278370

RESUMO

Unlimited generation of chimeric antigen receptor (CAR) T cells from human-induced pluripotent stem cells (iPSCs) is an attractive approach for "off-the-shelf" CAR T cell immunotherapy. Approaches to efficiently differentiate iPSCs into canonical αß T cell lineages, while maintaining CAR expression and functionality, however, have been challenging. We report that iPSCs reprogramed from CD62L+ naive and memory T cells followed by CD19-CAR engineering and 3D-organoid system differentiation confers products with conventional CD8αß-positive CAR T cell characteristics. Expanded iPSC CD19-CAR T cells showed comparable antigen-specific activation, degranulation, cytotoxicity, and cytokine secretion compared with conventional CD19-CAR T cells and maintained homogeneous expression of the TCR derived from the initial clone. iPSC CD19-CAR T cells also mediated potent antitumor activity in vivo, prolonging survival of mice with CD19+ human tumor xenografts. Our study establishes feasible methodologies to generate highly functional CAR T cells from iPSCs to support the development of "off-the-shelf" manufacturing strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Animais , Diferenciação Celular , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Organoides/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
8.
Neuro Oncol ; 24(8): 1318-1330, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100373

RESUMO

BACKGROUND: Wide-spread application of chimeric antigen receptor (CAR) T cell therapy for cancer is limited by the current use of autologous CAR T cells necessitating the manufacture of individualized therapeutic products for each patient. To address this challenge, we have generated an off-the-shelf, allogeneic CAR T cell product for the treatment of glioblastoma (GBM), and present here the feasibility, safety, and therapeutic potential of this approach. METHODS: We generated for clinical use a healthy-donor derived IL13Rα2-targeted CAR+ (IL13-zetakine+) cytolytic T-lymphocyte (CTL) product genetically engineered using zinc finger nucleases (ZFNs) to permanently disrupt the glucocorticoid receptor (GR) (GRm13Z40-2) and endow resistance to glucocorticoid treatment. In a phase I safety and feasibility trial we evaluated these allogeneic GRm13Z40-2 T cells in combination with intracranial administration of recombinant human IL-2 (rhIL-2; aldesleukin) in six patients with unresectable recurrent GBM that were maintained on systemic dexamethasone (4-12 mg/day). RESULTS: The GRm13Z40-2 product displayed dexamethasone-resistant effector activity without evidence for in vitro alloreactivity. Intracranial administration of GRm13Z40-2 in four doses of 108 cells over a two-week period with aldesleukin (9 infusions ranging from 2500-5000 IU) was well tolerated, with indications of transient tumor reduction and/or tumor necrosis at the site of T cell infusion in four of the six treated research subjects. Antibody reactivity against GRm13Z40-2 cells was detected in the serum of only one of the four tested subjects. CONCLUSIONS: This first-in-human experience establishes a foundation for future adoptive therapy studies using off-the-shelf, zinc-finger modified, and/or glucocorticoid resistant CAR T cells.


Assuntos
Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Dexametasona , Glioblastoma/patologia , Glucocorticoides , Humanos , Imunoterapia Adotiva , Esteroides , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Discov ; 11(9): 2248-2265, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837065

RESUMO

Chimeric antigen receptor (CAR) T cells mediate potent antigen-specific antitumor activity; however, their indirect effects on the endogenous immune system are not well characterized. Remarkably, we demonstrate that CAR T-cell treatment of mouse syngeneic glioblastoma (GBM) activates intratumoral myeloid cells and induces endogenous T-cell memory responses coupled with feed-forward propagation of CAR T-cell responses. IFNγ production by CAR T cells and IFNγ responsiveness of host immune cells are critical for tumor immune landscape remodeling to promote a more activated and less suppressive tumor microenvironment. The clinical relevance of these observations is supported by studies showing that human IL13Rα2-CAR T cells activate patient-derived endogenous T cells and monocytes/macrophages through IFNγ signaling and induce the generation of tumor-specific T-cell responses in a responding patient with GBM. These studies establish that CAR T-cell therapy has the potential to shape the tumor microenvironment, creating a context permissible for eliciting endogenous antitumor immunity. SIGNIFICANCE: Our findings highlight the critical role of IFNγ signaling for a productive CAR T-cell therapy in GBM. We establish that CAR T cells can activate resident myeloid populations and promote endogenous T-cell immunity, emphasizing the importance of host innate and adaptive immunity for CAR T-cell therapy of solid tumors.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Glioblastoma/tratamento farmacológico , Imunoterapia Adotiva , Interferon gama/metabolismo , Células Mieloides/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Glioblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Discov ; 11(5): 1192-1211, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33328215

RESUMO

Glioblastoma (GBM) contains self-renewing GBM stem cells (GSC) potentially amenable to immunologic targeting, but chimeric antigen receptor (CAR) T-cell therapy has demonstrated limited clinical responses in GBM. Here, we interrogated molecular determinants of CAR-mediated GBM killing through whole-genome CRISPR screens in both CAR T cells and patient-derived GSCs. Screening of CAR T cells identified dependencies for effector functions, including TLE4 and IKZF2. Targeted knockout of these genes enhanced CAR antitumor efficacy. Bulk and single-cell RNA sequencing of edited CAR T cells revealed transcriptional profiles of superior effector function and inhibited exhaustion responses. Reciprocal screening of GSCs identified genes essential for susceptibility to CAR-mediated killing, including RELA and NPLOC4, the knockout of which altered tumor-immune signaling and increased responsiveness of CAR therapy. Overall, CRISPR screening of CAR T cells and GSCs discovered avenues for enhancing CAR therapeutic efficacy against GBM, with the potential to be extended to other solid tumors. SIGNIFICANCE: Reciprocal CRISPR screening identified genes in both CAR T cells and tumor cells regulating the potency of CAR T-cell cytotoxicity, informing molecular targeting strategies to potentiate CAR T-cell antitumor efficacy and elucidate genetic modifications of tumor cells in combination with CAR T cells to advance immuno-oncotherapy.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Neoplasias Encefálicas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Receptores de Antígenos Quiméricos/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Glioblastoma/patologia , Humanos
11.
Cancer Immunol Res ; 9(1): 75-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093217

RESUMO

Lymphomas with central nervous system (CNS) involvement confer a worse prognosis than those without CNS involvement, and patients currently have limited treatment options. T cells genetically engineered with CD19-targeted chimeric antigen receptors (CAR) are effective against B-cell malignancies and show tremendous potential in the treatment of systemic lymphoma. We aimed to leverage this strategy toward a more effective therapy for patients with lymphoma with CNS disease. NOD-scid IL2Rgammanull (NSG) mice with CNS and/or systemic lymphoma were treated with CD19-CAR T cells via intracerebroventricular (ICV) or intravenous (IV) injection. CAR T cells isolated after treatment were rigorously examined for phenotype, gene expression, and function. We observed that CAR T cells infused ICV, but not IV, completely and durably eradicated both CNS and systemic lymphoma. CAR T cells delivered ICV migrated efficiently to the periphery, homed to systemic tumors, and expanded in vivo, leading to complete elimination of disease and resistance to tumor rechallenge. Mechanistic studies indicated that ICV-delivered CAR T cells are conditioned by exposure to cerebrospinal fluid in the ICV environment for superior antilymphoma activity and memory function compared with IV-delivered CAR T cells. Further analysis suggested that manipulating cellular metabolism or preactivating therapeutic CAR T cells with antigen ex vivo may improve the efficacy of CAR T cells in vivo Our demonstration that ICV-delivered CD19-CAR T cells had activity against CNS and systemic lymphoma could offer a valuable new strategy for treatment of B-cell malignancies with CNS involvement.


Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Imunoterapia Adotiva/métodos , Linfoma/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Injeções Intravenosas , Injeções Intraventriculares , Linfoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Transl Med ; 12(533)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132216

RESUMO

Although chimeric antigen receptor (CAR) T cells have demonstrated signs of antitumor activity against glioblastoma (GBM), tumor heterogeneity remains a critical challenge. To achieve broader and more effective GBM targeting, we developed a peptide-bearing CAR exploiting the GBM-binding potential of chlorotoxin (CLTX). We find that CLTX peptide binds a great proportion of tumors and constituent tumor cells. CAR T cells using CLTX as the targeting domain (CLTX-CAR T cells) mediate potent anti-GBM activity and efficiently target tumors lacking expression of other GBM-associated antigens. Treatment with CLTX-CAR T cells resulted in tumor regression in orthotopic xenograft GBM tumor models. CLTX-CAR T cells do not exhibit observable off-target effector activity against normal cells or after adoptive transfer into mice. Effective targeting by CLTX-CAR T cells requires cell surface expression of matrix metalloproteinase-2. Our results pioneer a peptide toxin in CAR design, expanding the repertoire of tumor-selective CAR T cells with the potential to reduce antigen escape.


Assuntos
Glioblastoma , Venenos de Escorpião , Animais , Linhagem Celular Tumoral , Glioblastoma/terapia , Imunoterapia Adotiva , Metaloproteinase 2 da Matriz , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Immunol Res ; 7(5): 759-772, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30890531

RESUMO

Improvements in the quality and fitness of chimeric antigen receptor (CAR)-engineered T cells, through CAR design or manufacturing optimizations, could enhance the therapeutic potential of CAR-T cells. One parameter influencing the effectiveness of CAR-T cell therapy is the differentiation status of the final product: CAR-T cells that are less-differentiated and less exhausted are more therapeutically effective. In the current study, we demonstrate that CAR-T cells expanded in IL15 (CAR-T/IL15) preserve a less-differentiated stem cell memory (Tscm) phenotype, defined by expression of CD62L+CD45RA+ CCR7+, as compared with cells cultured in IL2 (CAR-T/IL2). CAR-T/IL15 cells exhibited reduced expression of exhaustion markers, higher antiapoptotic properties, and increased proliferative capacity upon antigen challenge. Furthermore, CAR-T/IL15 cells exhibited decreased mTORC1 activity, reduced expression of glycolytic enzymes and improved mitochondrial fitness. CAR-T/IL2 cells cultured in rapamycin (mTORC1 inhibitor) shared phenotypic features with CAR-T/IL15 cells, suggesting that IL15-mediated reduction of mTORC1 activity is responsible for preserving the Tscm phenotype. CAR-T/IL15 cells promoted superior antitumor responses in vivo in comparison with CAR-T/IL2 cells. Inclusion of cytokines IL7 and/or IL21 in addition to IL15 reduced the beneficial effects of IL15 on CAR-T phenotype and antitumor potency. Our findings show that IL15 preserves the CAR-T cell Tscm phenotype and improves their metabolic fitness, which results in superior in vivo antitumor activity, thus opening an avenue that may improve future adoptive T-cell therapies.


Assuntos
Imunoterapia Adotiva , Interleucina-15/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Células-Tronco/imunologia , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Humanos , Memória Imunológica , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Fenótipo , Linfócitos T/imunologia
14.
JCI Insight ; 3(10)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29769444

RESUMO

Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glioblastoma/patologia , Humanos
15.
J Nucl Med ; 59(10): 1531-1537, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29728514

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a promising clinical approach for reducing tumor progression and prolonging patient survival. However, improvements in both the safety and the potency of CAR T cell therapy demand quantitative imaging techniques to determine the distribution of cells after adoptive transfer. The purpose of this study was to optimize 89Zr-oxine labeling of CAR T cells and evaluate PET as a platform for imaging adoptively transferred CAR T cells. Methods: CAR T cells were labeled with 0-1.4 MBq of 89Zr-oxine per 106 cells and assessed for radioactivity retention, viability, and functionality. In vivo trafficking of 89Zr-oxine-labeled CAR T cells was evaluated in 2 murine xenograft tumor models: glioblastoma brain tumors with intracranially delivered IL13Rα2-targeted CAR T cells, and subcutaneous prostate tumors with intravenously delivered prostate stem cell antigen (PSCA)-targeted CAR T cells. Results: CAR T cells were efficiently labeled (75%) and retained more than 60% of the 89Zr over 6 d. In vitro cytokine production, migration, and tumor cytotoxicity, as well as in vivo antitumor activity, were not significantly reduced when labeled with 70 kBq/106 cells. IL13Rα2-CAR T cells delivered intraventricularly were detectable by PET for at least 6 d throughout the central nervous system and within intracranial tumors. When intravenously administered, PSCA-CAR T cells also showed tumor tropism, with a 9-fold greater tumor-to-muscle ratio than for CAR-negative T cells. Conclusion:89Zr-oxine can be used for labeling and imaging CAR T cells while maintaining cell viability and function. On the basis of these studies, we conclude that 89Zr-oxine is a clinically translatable platform for real-time assessment of cell therapies.


Assuntos
Imunoterapia Adotiva , Oxiquinolina/metabolismo , Radioisótopos , Linfócitos T/imunologia , Zircônio , Animais , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Masculino , Camundongos , Oxiquinolina/farmacocinética , Linfócitos T/metabolismo , Distribuição Tecidual
16.
Clin Cancer Res ; 24(1): 95-105, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061641

RESUMO

Purpose: Metastasis to the brain from breast cancer remains a significant clinical challenge, and may be targeted with CAR-based immunotherapy. CAR design optimization for solid tumors is crucial due to the absence of truly restricted antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we have optimized HER2-CAR T cells for the treatment of breast to brain metastases, and determined optimal second-generation CAR design and route of administration for xenograft mouse models of breast metastatic brain tumors, including multifocal and leptomeningeal disease.Experimental Design: HER2-CAR constructs containing either CD28 or 4-1BB intracellular costimulatory signaling domains were compared for functional activity in vitro by measuring cytokine production, T-cell proliferation, and tumor killing capacity. We also evaluated HER2-CAR T cells delivered by intravenous, local intratumoral, or regional intraventricular routes of administration using in vivo human xenograft models of breast cancer that have metastasized to the brain.Results: Here, we have shown that HER2-CARs containing the 4-1BB costimulatory domain confer improved tumor targeting with reduced T-cell exhaustion phenotype and enhanced proliferative capacity compared with HER2-CARs containing the CD28 costimulatory domain. Local intracranial delivery of HER2-CARs showed potent in vivo antitumor activity in orthotopic xenograft models. Importantly, we demonstrated robust antitumor efficacy following regional intraventricular delivery of HER2-CAR T cells for the treatment of multifocal brain metastases and leptomeningeal disease.Conclusions: Our study shows the importance of CAR design in defining an optimized CAR T cell, and highlights intraventricular delivery of HER2-CAR T cells for treating multifocal brain metastases. Clin Cancer Res; 24(1); 95-105. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Neoplasias Encefálicas/terapia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Antígenos CD28/genética , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia Adotiva/métodos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptor ErbB-2/genética , Receptores de Antígenos Quiméricos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Ther ; 26(1): 31-44, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29103912

RESUMO

T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8+ T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.


Assuntos
Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13/antagonistas & inibidores , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Antineoplásicos/imunologia , Antígenos CD19/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Citotoxicidade Imunológica , Dextroanfetamina/farmacologia , Modelos Animais de Doenças , Ordem dos Genes , Engenharia Genética , Vetores Genéticos/genética , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Imunoterapia Adotiva/métodos , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Camundongos , Receptores de Antígenos Quiméricos/química , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncoimmunology ; 5(1): e1072671, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942092

RESUMO

Human CD8+ effector T cells derived from CD45RO+CD62L+ precursors enriched for central memory (TCM) precursors retain the capacity to engraft and reconstitute functional memory upon adoptive transfer, whereas effectors derived from CD45RO+CD62L- precursors enriched for effector memory precursors do not. Here we sought to compare the engraftment fitness and function of CD8+ effector T cells derived from CD45RA+CD62L+ precursors enriched for naïve and stem cell memory precursors (TN/SCM) with that of TCM. We found that cytotoxic T cells (CTLs) derived from TCM transcribed higher levels of CD28, FOS, INFγ, Eomesodermin (Eomes), and lower levels of BCL2L11, maintained higher levels of phosphorylated AKT, and displayed enhanced sensitivity to the proliferative and anti-apoptotic effects of γ-chain cytokines compared to CTLs derived from TN/SCM. Higher frequencies of CTLs derived from TCM retained CD28 expression and upon activation secreted higher levels of IL-2. In NOD/Scid IL-2RγCnull mice, CD8+ TCM derived CTLs engrafted to higher frequencies in response to human IL-15 and mounted robust proliferative responses to an immunostimulatory vaccine. Similarly, CD8+ TCM derived CD19CAR+ CTLs exhibited superior antitumor potency following adoptive transfer compared to their CD8+ TN/SCM derived counterparts. These studies support the use of TCM enriched cell products for adoptive therapy of cancer.

19.
Blood ; 122(18): 3138-48, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24030378

RESUMO

Induction treatments for acute myeloid leukemia (AML) have remained largely unchanged for nearly 50 years, and AML remains a disease of poor prognosis. Allogeneic hematopoietic cell transplantation can achieve cures in select patients and highlights the susceptibility of AML to donor-derived immunotherapy. The interleukin-3 receptor α chain (CD123) has been identified as a potential immunotherapeutic target because it is overexpressed in AML compared with normal hematopoietic stem cells. Therefore, we developed 2 chimeric antigen receptors (CARs) containing a CD123-specific single-chain variable fragment, in combination with a CD28 costimulatory domain and CD3-ζ signaling domain, targeting different epitopes on CD123. CD123-CAR-redirected T cells mediated potent effector activity against CD123+ cell lines as well as primary AML patient samples. CD123 CAR T cells did not eliminate granulocyte/macrophage and erythroid colony formation in vitro. Additionally, T cells obtained from patients with active AML can be modified to express CD123 CARs and are able to lyse autologous AML blasts in vitro. Finally, CD123 CAR T cells exhibited antileukemic activity in vivo against a xenogeneic model of disseminated AML. These results suggest that CD123 CAR T cells are a promising immunotherapy for the treatment of high-risk AML.


Assuntos
Citotoxicidade Imunológica/imunologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide/imunologia , Receptores de Antígenos/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Doença Aguda , Animais , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Subunidade alfa de Receptor de Interleucina-3/genética , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Células K562 , Leucemia Mieloide/patologia , Leucemia Mieloide/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Linfócitos T/metabolismo , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Immunother ; 35(9): 689-701, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23090078

RESUMO

A key determinant of the therapeutic potency of adoptive T-cell transfer is the extent to which infused cells can persist and expand in vivo. Ex vivo propagated virus-specific and chimeric antigen receptor (CAR)-redirected antitumor CD8 effector T cells derived from CD45RA(-) CD62L(+) central memory (TCM) precursors engraft long-term and reconstitute functional memory after adoptive transfer. Here, we describe a clinical scale, closed system, immunomagnetic selection method to isolate CD8(+) T(CM) from peripheral blood mononuclear cells (PBMC). This method uses the CliniMACS device to first deplete CD14(+), CD45RA(+), and CD4(+) cells from PBMC, and then to positively select CD62L(+) cells. The average purity and yield of CD8(+) CD45RA(-) CD62L TCM obtained in full-scale qualification runs were 70% and 0.4% (of input PBMC), respectively. These CD8(+) T(CM) are responsive to anti-CD3/CD28 bead stimulation, and can be efficiently transduced with CAR encoding lentiviral vectors, and undergo sustained expansion in interleukin (IL)-2/IL-15 over 3-6 weeks. The resulting CD8(+) T(CM)-derived effectors are polyclonal, retain expression of CD62L and CD28, exhibit CAR-redirected antitumor effector function, and are capable of huIL-15-dependent in vivo homeostatic engraftment after transfer to immunodeficient NOD/Scid IL-2RgCnull mice. Adoptive therapy using purified T(CM) cells is now the subject of a Food and Drug Administration-authorized clinical trial for the treatment of CD19(+) B-cell malignancies, and 3 clinical cell products expressing a CD19-specific CAR for IND #14645 have already been successfully generated from lymphoma patients using this manufacturing platform.


Assuntos
Antígenos CD19/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Fenótipo , Transferência Adotiva , Animais , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Criopreservação , Citocinas/biossíntese , Citotoxicidade Imunológica , Vetores Genéticos/genética , Humanos , Separação Imunomagnética/métodos , Imunofenotipagem , Selectina L/metabolismo , Lentivirus/genética , Ativação Linfocitária/imunologia , Linfoma/imunologia , Linfoma/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução Genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA