Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2311103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489817

RESUMO

ß-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of ß-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent ß-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated ß3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated ß3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated ß3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.


Assuntos
Simulação de Dinâmica Molecular , Nanoestruturas , Peptídeos , Nanoestruturas/química , Peptídeos/química , Lipídeos/química , Microscopia de Força Atômica
2.
Aust J Chem ; 76(8): 482-492, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37780415

RESUMO

The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/ß-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/ß-peptides contained cyclic ß-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.

3.
Biomed Pharmacother ; 161: 114556, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948137

RESUMO

BACKGROUND AND PURPOSE: This study investigated the reno-protective effects of a highly selective AT2R agonist peptide, ß-Pro7Ang III in a mouse model of acute kidney injury (AKI). METHODS: C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either ß-Pro7Ang III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity. The association of the therapeutic effects of ß-Pro7Ang III with macrophage number and phenotype was determined in vivo and in vitro. KEY RESULTS: Decreased kidney tubular injury, interstitial matrix expansion and reduced interstitial immune cell infiltration in IRI mice receiving ß-Pro7Ang III treatment was observed at day 7, compared to IRI mice without treatment. This correlated to reduced collagen accumulation and MMP-2 activity in IRI mice following ß-Pro7Ang III treatment. FACS analysis showed a reduced number and proportion of CD45+CD11b+F4/80+ macrophages in IRI kidneys in response to ß-Pro7Ang III, correlating with a significant increase in M2 macrophage markers and decreased M1 markers at day 3 and 7 post-IR injury, respectively. In vitro analysis of cultured THP-1 cells showed that ß-Pro7Ang III attenuated lipopolysaccharide (LPS)-induced tumour necrosis factor-α (TNF-α) and interleukin (IL)- 6 production but increased IL-10 secretion, compared to LPS alone. CONCLUSION: Administration of ß-Pro7Ang III via mini-pump improved kidney structure and reduced interstitial collagen accumulation, in parallel with an alteration of macrophage phenotype and anti-inflammatory cytokine release, therefore mitigating the downstream progression of ischemic AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Rim , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Colágeno/farmacologia , Traumatismo por Reperfusão/genética , Reperfusão
4.
Nanoscale ; 15(3): 1431-1440, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594515

RESUMO

Determining the porosity of hydrogels is an important component of material characterisation. While scanning electron microscopy (SEM) is a widely used method to study hydrogel nanoarchitecture, it is well-established that SEM sample preparation methods can alter the structure of hydrogels. Herein we describe the impact of sample preparation on the SEM analysis of self-assembling ß-peptide hydrogels. Three methods of hydrogel preparation for SEM were compared, and each method preserved distinctly different nanoarchitecture, specifically, different levels of fibre alignment and porosity. Comparison of conventional SEM preparation and our hybrid method, which comprises high pressure freezing, freeze substitution without fixative and critical point drying, showed a high degree of similarity at the nanometre scale and diverging architecture at the micron scale. This study quantified the impact of chemical fixation versus high pressure freezing on self-assembling ß3-peptide hydrogels, demonstrated the effect of sample preparation on fibre alignment and porosity, and presents a novel hybrid preparation method where chemical fixation can be avoided when conventional SEM is desired.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Congelamento
6.
ACS Appl Mater Interfaces ; 13(49): 58279-58290, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756031

RESUMO

A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated ß3-tripeptide is presented. The drug-loaded ß3-peptide was successfully co-assembled with a functionally inert lipidated ß3-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days. The esterase-mediated sustained release of the bioactive brain-derived neurotrophic factor (BDNF) peptide mimics from the hydrogel resulted in increased neuronal survival and normal neuronal function of peripheral neurons. These studies define a versatile strategy for the facile synthesis and co-assembly of self-assembling ß3-peptide-based hydrogels with the ability to control drug release using endogenous esterases with potential in vivo applications for sustained localized drug delivery.


Assuntos
Esterases/metabolismo , Hidrogéis/farmacologia , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Esterases/sangue , Feminino , Hidrogéis/química , Hidrogéis/metabolismo , Teste de Materiais , Estrutura Molecular , Neurônios/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
7.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558564

RESUMO

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Assuntos
Escherichia coli , Peptídeos , Antibacterianos/farmacologia , Bicamadas Lipídicas , Lipídeos , Microscopia de Força Atômica
8.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207639

RESUMO

Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.


Assuntos
Antineoplásicos , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Proteínas Citotóxicas Formadoras de Poros , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Ovinos
9.
Free Radic Biol Med ; 160: 391-402, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32822744

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor. Maximal surgical resection followed by radiotherapy and concomitant chemotherapy with temozolomide remains the first-line therapy, prolonging the survival of patients by an average of only 2.5 months. There is therefore an urgent need for novel therapeutic strategies to improve clinical outcomes. Reactive oxygen species (ROS) are an important contributor to GBM development. Here, we describe the rational design and synthesis of a stable hybrid molecule tethering two ROS regulating moieties, with the aim of constructing a chemopreventive and anticancer chemical entity that retains the properties of the parent compounds. We utilized the selective AT1R antagonist losartan, leading to the inhibition of ROS levels, and the antioxidant flavonoid quercetin. In GBM cells, we show that this hybrid retains the binding potential of losartan to the AT1R through competition-binding experiments and simultaneously exhibits ROS inhibition and antioxidant capacity similar to native quercetin. In addition, we demonstrate that the hybrid is able to alter the cell cycle distribution of GBM cells, leading to cell cycle arrest and to the induction of cytotoxic effects. Last, the hybrid significantly and selectively reduces cancer cell proliferation and angiogenesis in primary GBM cultures with respect to the isolated parent components or their simple combination, further emphasizing the potential utility of the current hybridization approach in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Losartan , Quercetina/farmacologia , Temozolomida/farmacologia
10.
Chemistry ; 26(47): 10690-10694, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32691857

RESUMO

Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6 -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them achieved enhanced AT2 R/AT1 R subtype selectivity. This diversification has been studied through 2D NMR spectroscopy and unveiled a putative more structured microenvironment for the two selective ligands accompanied with increased number of NOE cross-peaks. The most potent analogue, compound 2, has been explored regarding its neurotrophic potential and resulted in an enhanced neurite growth with respect to the established agent C21.


Assuntos
Angiotensina II/química , Angiotensina II/metabolismo , Mutação , Peptídeos/genética , Receptores de Angiotensina/química , Receptores de Angiotensina/metabolismo , Aminoácidos/genética , Angiotensina II/genética , Animais , Células HEK293 , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
11.
Acta Biomater ; 102: 1-12, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751809

RESUMO

Functional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI. This review briefly discusses current development on cell-based therapies and the use of bioactive matrices, hydrogels in particular, when incorporated in regenerative therapies. Desirable characteristics of bioactive matrices that have been shown to augment neural repair in TBI models were identified and further discussed. Understanding the relative outcomes of newly developed biomaterials implanted in vivo can better guide the development of biomaterials as a therapeutic strategy, for biomaterial-based cellular therapies are still in their nascent stages. Nonetheless, the value of bioactive matrices as a treatment for acute brain injuries should be appreciated and further developed. STATEMENT OF SIGNIFICANCE: Cell-based therapies have received attention as an alternative therapeutic strategy to improve clinical outcome post-traumatic brain injury but have achieved limited success. Whilst the incorporation of newly developed biomaterials in regenerative therapies has shown promise in augmenting neural repair, studies have revealed new hurdles which must be overcome to improve their therapeutic efficacy. This review discusses the recent development of cell-based therapies with a specific focus on the use of bioactive matrices in the form of hydrogels, to complement cell transplantation within the injured brain. Moreover, this review consolidates in vivo animal studies that demonstrate relative functional outcome upon the implantation of different biomaterials to highlight their desirable traits to guide their development for regenerative therapies in traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Hidrogéis/química , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Alicerces Teciduais/química , Animais , Encéfalo/fisiologia , Humanos , Neurogênese/fisiologia , Transplante de Células-Tronco/métodos
12.
Clin Sci (Lond) ; 132(17): 1977-1994, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30220651

RESUMO

Chronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage. Bioengineered hydrogels may provide a route of cell delivery to enhance treatment efficacy and optimise the targeting effectiveness while minimising any loss of cell function. In this review, we highlight the advances in stem cell therapy targeting kidney disease and discuss the emerging role of hydrogel delivery systems to fully realise the potential of adult stem cells as a regenerative therapy for CKD in humans. MSCs and EPCs mediate kidney repair through distinct paracrine effects. As a delivery system, hydrogels can prolong these paracrine effects by improving retention at the site of injury and protecting the transplanted cells from the harsh inflammatory microenvironment. We also discuss the features of a hydrogel, which may be tuned to optimise the therapeutic potential of encapsulated stem cells, including cell-adhesive epitopes, material stiffness, nanotopography, modes of gelation and degradation and the inclusion of bioactive molecules. This review concludes with a discussion of the challenges to be met for the widespread clinical use of hydrogel delivery system of stem cell therapy for CKD.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Hidrogéis , Insuficiência Renal Crônica/terapia , Transplante de Células-Tronco/métodos , Células Progenitoras Endoteliais/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Regeneração , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Insuficiência Renal Crônica/fisiopatologia , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
13.
ACS Nano ; 12(9): 9101-9109, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30157375

RESUMO

Peptide self-assembly represents a powerful bottom-up approach to the fabrication of nanomaterials. ß3-Peptides are non-natural peptides composed entirely of ß-amino acids, which have an extra methylene in the backbone, and we reported fibers derived from the self-assembly of ß3-peptides that adopt 14-helical structures. ß3-Peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability. However, the three-dimensional structure of many of these materials remains unknown. To develop structure-based criteria for the design of ß3-peptide-based biomaterials with tailored function, we investigated the structure of a tri-ß3-peptide nanoassembly by molecular dynamics simulations and X-ray fiber diffraction analysis. Diffraction data was collected from aligned fibrils formed by Ac-ß3[LIA] in water and used to inform and validate the model structure. Models with 3-fold radial symmetry resulted in stable fibers with a triple-helical coiled-coil motif and measurable helical pitch and periodicity. The fiber models revealed a hydrophobic core and twist along the fiber axis arising from a maximization of contacts between hydrophobic groups of adjacent tripeptides on the solvent-exposed fiber surface. These atomic structures of macroscale fibers derived from ß3-peptide-based materials provide valuable insight into the effects of the geometric placement of the side chains and the influence of solvent on the core fiber structure which is perpetuated in the superstructure morphology.


Assuntos
Nanofibras/química , Peptídeos/química , Materiais Biocompatíveis/química , Modelos Moleculares , Tamanho da Partícula , Conformação Proteica , Propriedades de Superfície
14.
Chem Rev ; 118(11): 5392-5487, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29793341

RESUMO

The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.


Assuntos
Membrana Celular/química , Interferometria/métodos , Bicamadas Lipídicas/química , Lipossomos/química , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Proteínas de Membrana/química , Peptídeos/química
15.
ACS Omega ; 2(2): 670-677, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29152602

RESUMO

Delivery across the cell membrane is of critical importance for the development of therapeutics targeting intracellular proteins. The use of cell-penetrating peptides (CPPs), such as Penetratin (P16), has facilitated the delivery of otherwise cell-impermeable molecules allowing them to carry out their biological function. A truncated form of Penetratin (RRMKWKK) has been previously described as the minimal Penetratin sequence that is required for translocation across the cell membrane. Here, we performed a detailed comparison of cellular uptake by Penetratin (P16) and the truncated Penetratin peptide (P7), including their ability to deliver G7-18NATE, a cyclic peptide targeting the cytosolic cancer target Grb7-adapter protein into cells. We identified that both P16 and P7 were internalized by cells to comparable levels; however, only P16 was effective in delivering G7-18NATE to produce a biological response. Live-cell imaging of fluorescein isothiocyanate-labeled peptides suggested that while P7 may be taken up into cells, it does not gain access to the cytosolic compartment. Thus, this study has identified that the P7 peptide is a poor CPP for the delivery of G7-18NATE and may also be insufficient for the intracellular delivery of other bioactive molecules.

16.
Biophys Rev ; 9(4): 443-457, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28823106

RESUMO

Apoptosis is important in regulating cell death turnover and is mediated by the intrinsic and death receptor-based extrinsic pathways which converge at the mitochondrial outer membrane (MOM) leading to mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of apoptotic proteins that further activate the downstream pathway of apoptosis. Thus, tight regulation of MOMP is crucial in controlling apoptosis, and a lack of control may lead to tissue and organ malformation and the development of cancers. Despite a growing number of studies focusing on the structure and activity of the proteins involved in mediating MOMP, such as the Bcl-2 family proteins, the mechanism of MOMP is not well understood. In particular, the crucial role of the various structural properties and changes in lipid components of the MOM in mediating the recruitment and activation of different Bcl-2 proteins remains poorly understood. Furthermore, the factors that control the changes in mitochondrial membrane integrity from the initiation to the final disruption of MOM have yet to be clearly defined. In this review, we provide an overview of studies that focus on the mitochondrial membrane with a biophysical analysis of the interactions of the Bcl-2 proteins with the mitochondrial membrane.

17.
Curr Pharm Des ; 23(26): 3772-3785, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28625136

RESUMO

β-Amino acids are being increasingly used in the design of bioactive ligands and more recently in the generation of novel biomaterials. Peptides containing either individual β-amino acid substitutions or peptides comprised entirely of ß-amino acids, display unique properties in terms of their structural and/or chemical characteristics. β-Peptides form well-defined secondary structures that exhibit different geometries compared to the corresponding α-peptides. β-Peptides, including α-peptides containing only one or two β-amino acids, can be easily modified with different functional groups and are metabolically stable and, together with the predictable side chain topography, have led to the design of a growing number of bioactive β-peptides with a range of biological targets and therapeutic applications. More recently, our understanding of the folding and self-assembly of β-peptides has resulted in the generation of novel biomaterials. The focus of this review is to examine how the structural and chemical properties of β-peptides have been exploited in the design of bioactive peptides and selfassembled nanomaterials.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/química , Descoberta de Drogas/tendências , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/uso terapêutico , Animais , Materiais Biocompatíveis/uso terapêutico , Doenças Cardiovasculares , Descoberta de Drogas/métodos , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Peptídeos/genética , Peptídeos/uso terapêutico , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Moldes Genéticos
18.
Angew Chem Int Ed Engl ; 56(29): 8495-8499, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28513074

RESUMO

Δ-Myrtoxin-Mp1a (Mp1a), a 49-residue heterodimeric peptide from the venom of Myrmecia pilosula, comprises a 26-mer A chain and a 23-mer B chain connected by two disulfide bonds in an antiparallel arrangement. Combination of the individual synthetic chains through aerial oxidation remarkably resulted in the self-assembly of Mp1a as a homogenous product without the need for directed disulfide-bond formation. NMR analysis revealed a well-defined, unique structure containing an antiparallel α-helix pair. Dual polarization interferometry (DPI) analysis showed strong interaction with supported lipid bilayers and insertion within the bilayers. Mp1a caused non-specific Ca2+ influx in SH-SY5Y cells with a half maximal effective concentration (EC50 ) of 4.3 µm. Mp1a also displayed broad-spectrum antimicrobial activity, with the highest potency against Gram-negative Acinetobacter baumannii (MIC 25 nm). Intraplantar injection (10 µm) in mice elicited spontaneous pain and mechanical allodynia. Single- and two-chain mimetics of Mp1a revealed functional selectivity.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peçonhas/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Formigas , Cálcio/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/administração & dosagem , Peptídeos/química
19.
Nanotechnology ; 27(13): 135606, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26909736

RESUMO

ß(3)-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0-3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated ß(3)-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of ß(3)-tetrapeptides Ac-ß (3)Ala-ß(3)Leu-ß(3)Ile-ß(3)Ala (Ac-ß(3)[ALIA]), Ac-ß(3)Ser-ß(3)Leu-ß(3)Ile-ß(3)Ala (Ac-ß(3)[SLIA]) and Ac-ß (3)Lys-ß (3)Leu-ß(3)Ile-ß (3)Glu (Ac-ß(3)[KLIE]). ß(3)-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-ß(3)[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-ß(3)[SLIA] and Ac-ß(3)[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 µm.


Assuntos
Nanoestruturas/química , Oligopeptídeos/química , Difusão Dinâmica da Luz , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Solventes , Temperatura
20.
Chem Biol ; 22(11): 1417-1423, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26584778

RESUMO

Peptides comprised entirely of ß-amino acids, or ß-peptides, have attracted substantial interest over the past 25 years due to their unique structural and chemical characteristics. ß-Peptides form well-defined secondary structures that exhibit different geometries compared with their α-peptide counterparts, giving rise to their foldamer classification. ß-Peptide foldamers can be functionalized easily and are metabolically stable and, together with the predictable side-chain topography, have led to the design of a growing number of bioactive ß-peptides with a range of biological targets. The strategic engineering of chemical and topographic properties has also led to the design of ß-peptide mimics of higher-order oligomers. More recently, the ability of these peptides to self-assemble into complex structures of controlled geometries has been exploited in materials applications. The focus of this mini-review is on how the unique structural features of ß-peptide assemblies have been exploited in the design of self-assembled proteomimetic bundles and nanomaterials.


Assuntos
Peptídeos/química , Aminoácidos/química , Aminoácidos/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Nanoestruturas/química , Peptídeos/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA