Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(8)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892327

RESUMO

The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.


Assuntos
Basidiomycota , Lignina , Fungos/metabolismo , Lignina/metabolismo , Polyporales
2.
Fungal Genet Biol ; 112: 47-54, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28754284

RESUMO

The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers.


Assuntos
Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Hidrolases/biossíntese , Células Vegetais/metabolismo , Polyporales/enzimologia , Polyporales/crescimento & desenvolvimento , Madeira/microbiologia , Perfilação da Expressão Gênica , Hidrolases/genética , Lignina/metabolismo , Polyporales/genética
3.
Environ Microbiol ; 19(3): 1237-1250, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28028889

RESUMO

The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat.


Assuntos
Proteínas Fúngicas/genética , Polyporaceae/genética , Madeira/microbiologia , Biomassa , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Picea/metabolismo , Picea/microbiologia , Polyporaceae/crescimento & desenvolvimento , Polyporaceae/isolamento & purificação , Polyporaceae/metabolismo , Transcriptoma , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA