Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(25): 13318-34, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129206

RESUMO

Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC50 values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC50 values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site.


Assuntos
Antineoplásicos/química , Galactose/análogos & derivados , Galectinas/química , Pectinas/química , Polissacarídeos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Polarização de Fluorescência , Galactose/química , Galactose/farmacologia , Hemaglutinação , Humanos , Concentração Inibidora 50 , Mananas , Pectinas/farmacologia , Polissacarídeos/farmacologia , Ligação Proteica
2.
Chembiochem ; 11(17): 2453-64, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21064079

RESUMO

Gaucher disease (GD) is the most prevalent lysosomal-storage disorder, it is caused by mutations of acid ß-glucosidase (ß-glucocerebrosidase; ß-Glu). Recently, we found that bicyclic nojirimycin (NJ) derivatives of the sp(2)-iminosugar type, including the 6-thio-N'-octyl-(5N,6S)-octyliminomethylidene derivative (6S-NOI-NJ), behaved as very selective competitive inhibitors of the lysosomal ß-Glu and exhibited remarkable chaperone activities for several GD mutations. To obtain information about the cellular uptake pathway and intracellular distribution of this family of chaperones, we have synthesized a fluorescent analogue that maintains the fused piperidine-thiazolidine bicyclic skeleton and incorporates a dansyl group in the N'-substituent, namely 6-thio-(5N,6S)-[4-(N'-dansylamino)butyliminomethylidene]nojirimycin (6S-NDI-NJ). This structural modification does not significantly modify the biological activity of the glycomimetic as a chemical chaperone. Our study showed that 6S-NDI-NJ is mainly located in lysosome-related organelles in both normal and GD fibroblasts, and the fluorescent intensity of 6S-NDI-NJ in the lysosome is related to the ß-Glu concentration level. 6S-NDI-NJ also can enter cultured neuronal cells and act as a chaperone. Competitive inhibition studies of 6S-NDI-NJ uptake in fibroblasts showed that high concentrations of D-glucose have no effect on chaperone internalization, suggesting that it enters the cells through glucose-transporter-independent mechanisms.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Gaucher/enzimologia , Glucosilceramidase/antagonistas & inibidores , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/farmacocinética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Estabilidade Enzimática , Fibroblastos/metabolismo , Fluorescência , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Immunoblotting , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Microscopia Confocal , Modelos Químicos , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/farmacocinética , Chaperonas Moleculares/farmacologia , Estrutura Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA