Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 20(8): e07461, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35978624

RESUMO

The food enzyme chymosin (EC 3.4.23.4) is produced with the genetically modified Kluyveromyces lactis strain CIN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its recombinant DNA. It is intended to be used in milk processing for cheese production and for the production of fermented milk products. Dietary exposure was estimated to be up to 0.73 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,000 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of at least 1,300. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched for and four matches were found. The Panel considered that under the intended conditions of use the risk of allergic sensitisation and elicitation reactions by dietary exposure, although unlikely, cannot be excluded, particularly for individuals sensitised to cedar pollen allergens. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

2.
EFSA J ; 18(3): e06030, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32874248

RESUMO

The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on tartaric acid-tartrates (E 334-337, 354) when used as food additives. The Scientific Committee for Food (SCF) in 1990 established an acceptable daily intake (ADI) of 30 mg/kg body weight (bw) per day, for l(+)-tartaric acid and its potassium and sodium salts. The metabolism of l(+)-tartaric acid and its potassium sodium salt was shown to be species dependent, with a greater absorption in rats than in humans. No toxic effects, including nephrotoxicity, were observed in toxicological studies in which the l(+)-form was tested. There was no indication for a genotoxic potential of tartaric acid and its sodium and potassium salts. In a chronic study in rats, no indication for carcinogenicity of monosodium l(+)-tartrate was reported at the highest dose tested (3,100 mg/kg bw per day). The available studies for maternal or developmental toxicity did not report any relevant effects; no studies for reproductive toxicity were available; however, no effects on reproductive organs were observed in the chronic toxicity study. The Panel concluded that the data on systemic availability were robust enough to derive a chemical-specific uncertainty factor instead of the usual default uncertainty factor of 100. A total uncertainty factor of 10 was derived by applying a total interspecies uncertainty factor of 1 instead of 10, based on data showing lower internal exposure in humans compared to rats. The Panel established a group ADI for l(+)-tartaric acid-tartrates (E 334-337 and E 354) of 240 mg/kg bw per day, expressed as tartaric acid, by applying the total uncertainty factor of 10 to the reference point of 3,100 mg sodium tartrate/kg bw per day, approximately to 2,440 mg tartaric acid/kg bw per day. The exposure estimates for the different population groups for the refined non-brand-loyal exposure scenario did not exceed the group ADI of 240 mg/kg bw per day, expressed as tartaric acid. Some recommendations were made by the Panel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA