Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Colloid Interface Sci ; 670: 357-363, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38763031

RESUMO

Carbon dots (CDs) are carbon nano materials (CNMs) that find use across several biological applications because of their water solubility, biocompatible nature, eco-friendliness, and ease of synthesis. Additionally, their physiochemical properties can be chemically tuned for further optimization towards specific applications. Here, we investigate the efficacy of C70-derived Graphene Acid Quantum Dots (GAQDs) in mitigating the transformation of soluble, monomeric Hen Egg-White Lysozyme (HEWL) to mature fibrils during its amyloidogenic trajectory. Our findings reveal that GAQDs exhibit dose-dependent inhibition of HEWL fibril formation (up to 70 % at 5 mg/mL) without affecting mitochondrial membrane potential or inducing apoptosis at the same density. Furthermore, GAQDs scavenged reactive oxygen species (ROS); achieving a 50 % reduction in ROS levels at a mere 100 µg/mL when exposed to a standard free radical generator. GAQDs were not only found to be biocompatible with a human neuroblastoma-derived SHSY-5Y cell line but also rescued the cells from rotenone-induced apoptosis. The GAQD-tolerance of SHSY-5Y cells coupled with their ability to restitute cells from rotenone-dependent apoptosis, when taken in conjunction with the biocompatibility data, indicate that GAQDs possess neuroprotective potential. The data position this class of CNMs as promising candidates for resolving aberrant cellular outputs that associate with the advent and progress of multifactorial neurodegenerative disorders including Parkinson's (PD) and Alzheimer's diseases (AD) wherein environmental causes are implicated (95 % etiology). The data suggest that GAQDs are a multifunctional carbon-based sustainable nano-platform at the intersection of nanotechnology and neuroprotection for advancing green chemistry-derived, sustainable healthcare solutions.

2.
PLoS One ; 18(12): e0295441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127921

RESUMO

In an effort to identify novel anti-cancer agents, we employed a well-established High Throughput Screening (HTS) assay to assess the cytotoxic effect of compounds within the ChemBridge DIVERSet Library on a lymphoma cell line. This screen revealed a novel thiophene, F8 (methyl 5-[(dimethylamino)carbonyl]-4-methyl-2-[(3-phenyl-2-propynoyl) amino]-3-thiophenecarboxylate), that displays anti-cancer activity on lymphoma, leukemia, and other cancer cell lines. Thiophenes and thiophene derivatives have emerged as an important class of heterocyclic compounds that have displayed favorable drug characteristics. They have been previously reported to exhibit a broad spectrum of properties and varied uses in the field of medicine. In addition, they have proven to be effective drugs in various disease scenarios. They contain anti-inflammatory, anti-anxiety, anti-psychotic, anti-microbial, anti-fungal, estrogen receptor modulating, anti-mitotic, kinase inhibiting and anti-cancer activities, rendering compounds with a thiophene a subject of significant interest in the scientific community. Compound F8 consistently induced cell death at a low micromolar range on a small panel of cancer cell lines after a 48 h period. Further investigation revealed that F8 induced phosphatidylserine externalization, reactive oxygen species generation, mitochondrial depolarization, kinase inhibition, and induces apoptosis. These findings demonstrate that F8 has promising anti-cancer activity.


Assuntos
Antineoplásicos , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linhagem Celular Tumoral , Tiofenos/farmacologia , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
3.
J Control Release ; 361: 314-333, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562554

RESUMO

Solid tumors are abnormal mass of tissue, which affects the organs based on its malignancy and leads to the dysfunction of the affected organs. The major problem associated with treatment of solid tumors is delivering anticancer therapeutics to the deepest layers/core of the solid tumor. Deposition of excessive extracellular matrix (ECM) hinders the therapeutics to travel towards the core of the tumor. Therefore, conventional anticancer therapeutics can only reduce the tumor size and that also for a limited duration, and tumor recurrence occurs once the therapy is discontinued. Additionally, by the time the cancer is diagnosed, the cancer cells already started affecting the major organs of the body such as lung, liver, spleen, kidney, and brain, due to their ability to metastasize and lung is the primary site for them to be infiltrated. To facilitate the anticancer therapeutics to penetrate the deeper layers of tumor, and to provide concurrent treatment of both the solid tumor and metastasis, we have designed and developed a Bimodal Light Assisted Skin Tumor and Metastasis Treatment (BLAST), which is a combination of photothermal and chemotherapeutic moieties. The BLAST is composed of 2D boron nitride (BN) nanosheet with adsorbed molecules of BCL-2 inhibitor, Navitoclax (NAVI) on its surface, that can breakdown excessive ECM network and thereby facilitate dissociation of the solid tumor. The developed BLAST was evaluated for its ability to penetrate solid tumors using 3D spheroids for the uptake, cytotoxicity, growth inhibition, reactive oxygen species (ROS) detection, penetration, and downregulation of proteins upon laser irradiation. The in vivo therapeutic studies on a skin cancer mice model revealed that the BLAST with and without laser were able to penetrate the solid tumor, reduce tumor volume in mice, dissociate the protein network, and prevent lung metastasis as confirmed by immunohistochemistry and western blot analysis. Post analysis of serum and blood components revealed the safety and efficacy of BLAST in mice. Hence, the developed BLAST holds strong promise in solid tumor treatment and metastasis prevention simultaneously.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Animais , Camundongos , Fototerapia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Luz , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral
4.
Chem Biodivers ; 20(9): e202300843, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37501576

RESUMO

A novel series of pyrazole-oxindole conjugates were prepared and characterized as potential cytotoxic agents by FT-IR, NMR and HR-MS. The cytotoxic activity of these compounds was tested in the Jurkat acute T cell leukemia, CEM acute lymphoblastic leukemia, MCF10 A mammary epithelial and MDA-MB 231 triple negative breast cancer cell lines. Among the tested conjugates, 5-methyl-3-((3-(1-phenyl)-3-(p-tolyl)-1H-pyrazol-4-yl)methylene)indolin-2-one 6h emerged as the most cytotoxic with a CC50 of 4.36+/-0.2 µM against Jurkat cells. The mechanism of cell death induced by 6h was investigated through the Annexin V-FITC assay via flow cytometry. Reactive oxygen species (ROS) accumulation, mitochondrial health and the cell cycle progression were also evaluated in cells exposed to 6h. Results demonstrated that 6h induces apoptosis in a dose-response manner, without generating ROS and/or altering mitochondrial health. In addition, 6h disrupted the cell cycle distribution causing an increase in DNA fragmentation (Sub G0-G1), and an arrest in the G0-G1 phase. Taken together, the 6h compound revealed a strong potential as an antineoplastic agent evidenced by its cytotoxicity in leukemia cells, the activation of apoptosis and restriction of the cell cycle progression.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxindóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/química , Pirazóis/farmacologia
5.
Mol Biol Cell ; 33(14): ae2, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441842

RESUMO

The E. E. Just Award commemorates the great African-American cell biologist Dr. Ernest Everett Just, who was a successful pioneer in an era of systemic exclusion of minorities in science and academia. Receiving this award is not only an honor but a recognition of my long-standing commitment to helping Persons Excluded due to Ethnicity or Race (PEERS) to achieve success in biomedical careers. As a proud member of this group, I have devoted most of my career to training underrepresented undergraduate and graduate students to pursue scientific careers. My early work as a molecular immunologist focused on the search for enzymes involved in antigen-receptor gene recombination, as well as the characterization of nuclear factors involved in recombination and the transcriptional regulation of the murine recombination-activating genes. Over the past two decades, my research has focused on discovering and evaluating novel anticancer agents that can be used to treat various cancer types.


Assuntos
Distinções e Prêmios , Grupos Minoritários , Humanos , Animais , Camundongos , Negro ou Afro-Americano , Estudantes
6.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235258

RESUMO

Two series of novel unsymmetrical 3,5-bis(benzylidene)-4 piperidones 2a-f and 3a-e were designed as candidate antineoplastic agents. These compounds display potent cytotoxicity towards two colon cancers, as well as several oral squamous cell carcinomas. These compounds are less toxic to various non-malignant cells giving rise to large selectivity index (SI) figures. Many of the compounds are also cytotoxic towards CEM lymphoma and HL-60 leukemia cells. Representative compounds induced apoptotic cell death characterized by caspase-3 activation and subG1 accumulation in some OSCC cells, as well as the depolarization of the mitochondrial membrane potential in CEM cells. A further line of inquiry was directed to finding if the SI values are correlated with the atomic charges on the olefinic carbon atoms. The potential of these compounds as antineoplastic agents was enhanced by an ADME (absorption, distribution, metabolism, and excretion) evaluation of five lead molecules, which revealed no violations.


Assuntos
Antineoplásicos , Piperidonas , Antineoplásicos/farmacologia , Apoptose , Carbono/farmacologia , Caspase 3/farmacologia , Linhagem Celular Tumoral , Humanos , Piperidonas/farmacologia
7.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291095

RESUMO

BACKGROUND: Tumor-associated antigens (TAAs) have been investigated for many years as potential early diagnosis tools, especially for hepatocellular carcinoma (HCC). Nonetheless, very few studies have focused on the Hispanic HCC group that may be associated with distinct etiological risk factors. In the present study, we investigated novel anti-TAA autoantibodies as diagnostic biomarkers for Hispanic HCC patients. METHODS: Novel TAA targets were identified by the serological proteome analysis (SERPA) and from differentially expressed HCC driver genes via bioinformatics. The autoantibody levels were validated by enzyme-linked immunosorbent assay (ELISA). RESULTS: Among 19 potential TAA targets, 4 anti-TAA autoantibodies were investigated as potential diagnostic biomarkers with significantly high levels in Hispanic HCC sera, including DNA methyltransferase 3A (DNMT3A), p16, Hear shock protein 60 (Hsp60), and Heat shock protein A5 (HSPA5). The area under the ROC curve (AUC) value of the single autoantibodies varies from 0.7505 to 0.8885. After combining all 4 autoantibodies, the sensitivity of the autoantibody panel increased to 75% compared to the single one with the highest value of 45.8%. In a separate analysis of the Asian cohort, autoantibodies against HSPA5 and p16 showed significantly elevated levels in HCC compared to normal healthy controls, but not for DNMT3A or HSP60. CONCLUSION: Anti-DNMT3A, p16, HSPA5, and HSP60 autoantibodies have the potential to be diagnostic biomarkers for Hispanic HCC patients, of which DNMT3A and HSP60 might be exclusive for Hispanic HCC diagnosis.


Assuntos
Anticorpos Antineoplásicos , Antígenos de Neoplasias , Autoanticorpos , Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígenos de Neoplasias/imunologia , Autoanticorpos/sangue , Biomarcadores Tumorais/imunologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Chaperona BiP do Retículo Endoplasmático/imunologia , Hispânico ou Latino , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico , Proteoma , Anticorpos Antineoplásicos/sangue
8.
Invest New Drugs ; 40(5): 905-921, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35793039

RESUMO

Cancer remains the second most common cause of death in the US. Due to a recurrent problem with anticancer drug resistance, there is a current need for anticancer drugs with distinct modes of action for combination drug therapy We have tested two novel piperidone compounds, named 2608 (1-dichloroacetyl - 3,5-bis(3,4-difluorobenzylidene)-4-piperidone) and 2610 (1-dichloroacetyl-3,5-bis(3,4-dichlorobenzylidene)-4-piperidone), for their potential cytotoxicity on numerous human cancer cell lines. We found that both compounds were cytotoxic for breast, pancreatic, leukemia, lymphoma, colon, and fibroblast cell lines, with a cytotoxic concentration 50% (CC50) in the low micromolar to nanomolar concentration range. Further assays focused primarily on an acute lymphoblastic lymphoma and colon cancer cell lines since they were the most sensitive and resistant to the experimental piperidones. The cell death mechanism was evaluated through assays commonly used to detect the induction of apoptosis. These assays revealed that both 2608 and 2610 induced reactive oxygen species (ROS) accumulation, mitochondrial depolarization, and activated caspase-3/7. Our findings suggest that the piperidones induced cell death via the intrinsic apoptotic pathway. Additional assays revealed that both piperidones cause cell cycle alteration in lymphoma and colon cell lines. Both piperidones elicited DNA fragmentation, as evidenced by an increment in the sub-G0/G1 subpopulation in both cell lines. Similar to other related compounds, both piperidones were found to act as proteasome inhibitors by increasing the levels of poly-ubiquitinated proteins in both lymphoma and colon cell lines. Hence, the two piperidones exhibited attractive cytotoxic properties and suitable mechanisms of action, which makes them good candidates as anticancer drugs.


Assuntos
Antineoplásicos , Linfoma , Piperidonas , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , Masculino , Piperidonas/farmacologia , Próstata
9.
J Control Release ; 349: 783-795, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908622

RESUMO

Skin melanoma is one of the most common cancer types in the United States and worldwide, and its incidence continues to grow. Primary skin melanoma can be removed surgically when feasible and if detected at an early stage. Anti-cancer drugs can be applied topically to treat skin cancer lesions and used as an adjunct to surgery to prevent the recurrence of tumor growth. We developed a topical formulation composed of Navitoclax (NAVI), a BCL-2 inhibitor that results in apoptosis, and an ionic liquid of choline octanoate (COA) to treat early-stage melanoma. NAVI is a small hydrophobic molecule that solubilizes at 20% (w/v) when dissolved in 50% COA. Although NAVI is a highly effective chemotherapeutic, it is equally thrombocytopenic. We found that COA-mediated topical delivery of NAVI enhanced its penetration into the skin and held the drug in the deeper skin layers for an extended period. Topical delivery of NAVI produced a higher cancer-cell killing efficacy than orally administrated NAVI. In vivo experiments in a mouse model of human melanoma-induced skin cancer confirmed the formulation's effectiveness via an apoptotic mechanism without any significant skin irritation or systemic absorption of NAVI. Overall, this topical approach may provide a safe and effective option for better managing skin cancer in the clinic.


Assuntos
Antineoplásicos , Líquidos Iônicos , Melanoma , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Administração Cutânea , Caprilatos/farmacologia , Caprilatos/uso terapêutico , Colina , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2 , Pele , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
10.
Biology (Basel) ; 11(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741451

RESUMO

In recent years, the thienopyrazole moiety has emerged as a pharmacologically active scaffold with antitumoral and kinase inhibitory activity. In this study, high-throughput screening of 2000 small molecules obtained from the ChemBridge DIVERset library revealed a unique thieno[2,3-c]pyrazole derivative (Tpz-1) with potent and selective cytotoxic effects on cancer cells. Compound Tpz-1 consistently induced cell death at low micromolar concentrations (0.19 µM to 2.99 µM) against a panel of 17 human cancer cell lines after 24 h, 48 h, or 72 h of exposure. Furthermore, an in vitro investigation of Tpz-1's mechanism of action revealed that Tpz-1 interfered with cell cycle progression, reduced phosphorylation of p38, CREB, Akt, and STAT3 kinases, induced hyperphosphorylation of Fgr, Hck, and ERK 1/2 kinases, and disrupted microtubules and mitotic spindle formation. These findings support the continued exploration of Tpz-1 and other thieno[2,3-c]pyrazole-based compounds as potential small-molecule anticancer agents.

11.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053370

RESUMO

In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.


Assuntos
Pirazóis/toxicidade , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Pirazóis/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Tubulina (Proteína)/metabolismo
12.
Pharmacol Rep ; 74(1): 159-174, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34448104

RESUMO

BACKGROUND: Cancer is an ongoing worldwide health problem. Although chemotherapy remains the mainstay therapy for cancer, it is not always effective and has detrimental side effects. Here, we present piperidone compounds P3, P4, and P5 that selectively target cancer cells via protein- and stress-mediated mechanisms. METHODS: We assessed typical apoptotic markers including phosphatidylserine externalization, caspase-3 activation, and DNA fragmentation through flow cytometry. Then, specific markers of the intrinsic pathway of apoptosis including the depolarization of the mitochondria and the generation of reactive oxygen species (ROS) were investigated. Finally, we utilized western blot techniques, RT-qPCR, and observed the cell cycle profile after compound treatment to evaluate the possible behavior of these compounds as proteasome inhibitors. For statistical analyses, we employed the one-way ANOVA followed by Bonferroni post hoc test. RESULTS: P3, P4, and P5 induce cytotoxic effects towards tumorigenic cells, as opposed to non-cancerous cells, at the low micromolar range. Compound treatment leads to the activation of the intrinsic pathway of apoptosis. The accumulation of poly-ubiquitinated proteins and the pro-apoptotic protein Noxa, both typically observed after proteasome inhibition, occurs after P3, P4, and P5 treatment. The stress-related genes PMAIP1, ATF3, CHAC1, MYC, and HMOX-1 were differentially regulated to contribute to the cytotoxic activity of P3-P5. Finally, compound P5 causes cell cycle arrest at the G2/M phase. CONCLUSION: Taken together, compounds P3, P4, and P5 exhibit strong potential as anticancer drug candidates as shown by strong cytotoxic potential, activation of the intrinsic pathway of apoptosis, and show typical proteasome inhibitor characteristics.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Piperidonas/farmacologia , Fator 3 Ativador da Transcrição/metabolismo , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
13.
Medicines (Basel) ; 8(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34940290

RESUMO

A series of 3,5-bis(benzylidene)-4-piperidones 2a-u were prepared as candidate cytotoxic agents. In general, the compounds are highly toxic to human gingival carcinoma (Ca9-22), human squamous carcinoma-2 (HSC-2) and human squamous carcinoma-4 (HSC-4) neoplasms, but less so towards non-malignant human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF) and human pulp cells (HPC), thereby demonstrating tumour-selective toxicity. A further study revealed that most of the compounds in series 2 were more toxic to the human Colo-205 adenocarcinoma cell line (Colo-205), human HT29 colorectal adenocarcinoma cells (HT-29) and human CEM lymphoid cells (CEM) neoplasms than towards non-malignant human foreskin Hs27 fibroblast line (Hs27) cells. The potency of the cytotoxins towards the six malignant cell lines increased as the sigma and sigma star values of the aryl substituents rose. Attempts to condense various aryl aldehydes with 2,2,6,6-tetramethyl-4-piperidone led to the isolation of some 1,5-diaryl-1,4-pentadien-3-ones. The highest specificity for oral cancer cells was displayed by 2e and 2r. In the case of 2r, its selective toxicity exceeded that of doxorubicin and melphalan. The enones 2k, m, o have the highest SI values towards colon cancer and leukemic cells. Both 2e,r inhibited mitosis and increased the subG1 population (with a transient increase in G2/M phase cells). Slight activation of caspase-3, based on the cleavage of poly(ADP-ribose)polymerase (PARP) and procaspase 3, was detected.

14.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885719

RESUMO

A novel series of 1-[3-{3,5-bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone oximes 3a-h and related quaternary ammonium salts 4a-h were prepared as candidate antineoplastic agents. Evaluation against neoplastic Ca9-22, HSC-2 and HSC-4 cells revealed the compounds in series 3 and 4 to be potent cytotoxins with submicromolar CC50 values in virtually all cases. In contrast, the compounds were less cytocidal towards HGF, HPLF and HPC non-malignant cells revealing their tumour-selective toxicity. Quantitative structure-activity relationships revealed that, in general, both cytotoxic potency and selectivity index figures increased as the magnitude of the Hammett sigma values rose. In addition, 3a-h are cytotoxic towards a number of leukemic and colon cancer cells. 4b,c lowered the mitochondrial membrane potential in CEM cells, and 4d induced transient G2/M accumulation in Ca9-22 cells. Five compounds, namely 3c,d and 4c-e, were identified as lead molecules that have drug-like properties.


Assuntos
Antineoplásicos/síntese química , Neoplasias do Colo/tratamento farmacológico , Oximas/síntese química , Compostos de Amônio Quaternário/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Oximas/química , Oximas/farmacologia , Relação Quantitativa Estrutura-Atividade , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia
15.
Medicines (Basel) ; 8(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205029

RESUMO

A series of novel N2-acryloylhydrazides 1a-m and a related series of compounds 6a-c were prepared as potential chemostimulants. In general, these compounds are cytotoxic to human HCT 116 colon cancer cells, as well as human MCF-7 and MDA-MB-231 breast cancer cell lines. A representative compound N1-(3,4-dimethoxyphenylcarbonyl)-N2-acryloylhydrazine 1m sensitized HCT 116 cells to the potent antineoplastic agent 3,5-bis(benzylidene)-4-piperidone 2a, and also to 5-fluorouracil. A series of compounds was prepared that incorporated some of the molecular features of 2a and related compounds with various N2-acryloylhydrazides in series 1. These compounds are potent cytotoxins. Two modes of action of representative compounds are the lowering of mitochondrial membrane potential and increasing the concentration of reactive oxygen species.

16.
J Med Chem ; 64(10): 6949-6971, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34006099

RESUMO

Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of molecules that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound 7i was the most potent, with activity toward PPARγ EC50 = 0.245 µM and HDAC4 IC50 = 1.1 µM. Additionally, compounds 7c and 7i were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6 µM, respectively), induced apoptosis, and caused DNA fragmentation. Furthermore, compound 7c modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics.


Assuntos
Desenho de Fármacos , Histona Desacetilases/metabolismo , PPAR gama/metabolismo , Proteínas Repressoras/metabolismo , Tiazolidinedionas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos SCID , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , PPAR gama/química , PPAR gama/genética , Proteínas Repressoras/antagonistas & inibidores , Relação Estrutura-Atividade , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Ativação Transcricional/efeitos dos fármacos , Transplante Heterólogo
17.
Clin Cancer Drugs ; 8(1): 50-56, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35178342

RESUMO

BACKGROUND: Breast cancer is the most frequently diagnosed cancer in women worldwide. Pyronaridine (PND), an antimalarial drug, was shown to exert anticancer activity on seventeen different human cancer cells, seven from female breast tissue. Additionally, PND induced apoptosis via mitochondrial depolarization, alteration of cell cycle progression, and DNA intercalation. However, the molecular target of PND in cells was not elucidated. OBJECTIVE: Here, we have further investigated PND's mode of action by using transcriptome analysis. Preclinical studies were also performed to determine whether PND could affect tumor progression in a human breast cancer xenograft in mice. Moreover, we assessed the combined efficacy of PND with well-known anticancer drugs. METHODS: Transcriptome analyses of PND-treated cancer cells were performed. Topoisomerase II activity was evaluated by an in vitro assay. In addition, daily oral administration of PND was given to mice with human breast cancer xenografts. The differential nuclear staining assay measured in-vitro cell toxicity. RESULTS: The transcriptome signatures suggested that PND might act as a topoisomerase II inhibitor. Thus, topoisomerase inhibition assays were performed, providing evidence that PND is a bona fide topoisomerase II inhibitor. Also, in-vivo studies suggest that PND hinders tumor progression. Besides, combination studies of PND with anticancer drugs cisplatin and gemcitabine revealed higher cytotoxicity against cancer cells than individual drug administration. CONCLUSION: The findings provide evidence that PND is a topoisomerase II inhibitor and can hinder cancer progression in an animal model, further demonstrating PND's favorable characteristics as a repurposed anticancer drug.

18.
Chem Biodivers ; 18(2): e2000800, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33274824

RESUMO

In this study, we synthesized 22 compounds in a series with various substitution on imidazo[2,1-b][1,3,4]thiadiazole. The potential cytotoxic activity of these compounds investigated in leukemia cell lines by Differential Nuclear Staining (DNS). Our results identified two compounds, 2-(4-methoxybenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl thiocyanate and 6-(4-chlorophenyl)-2-(4-methoxybenzyl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde, exhibited the most cytotoxic effect against murine leukemia cells (L1210), human T-lymphocyte cells (CEM) and human cervix carcinoma cells (HeLa) with IC50 values ranging between 0.79 and 1.6 µM. The results indicate that 2-(4-methoxybenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl thiocyanate is inducing phosphatidylserine externalization and caspase-3 activation which are both a hallmark of apoptosis. Docking studies showed that 2-(4-methoxybenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl thiocyanate binds within the active sites of transforming growth factor beta (TGF-ß) type I receptor kinase domain by strong hydrogen binding and hydrophobic interactions.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Leucemia/tratamento farmacológico , Tiadiazóis/química , Tiadiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Imidazóis/química , Imidazóis/farmacologia , Leucemia/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
19.
Invest New Drugs ; 39(2): 400-415, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33063290

RESUMO

Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Lactoferrina/farmacologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Proteínas Recombinantes , Saccharomycetales
20.
PLoS One ; 15(9): e0238262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886682

RESUMO

Triple-negative breast cancer (TNBC) represents 15%-20% of all breast cancer types. It is more common among African American (AA) and Hispanic-Latina (HL) women. The biology of TNBC in HL women has been poorly characterized, but some data suggest that the molecular drivers of breast cancer might differ. There are no clinical tools to aid medical oncologists with decisions regarding appropriate individualized therapy, and no way to predict long-term outcomes. The aim of this study was to characterize individual patient gene mutation profiles and to identify the relationship with clinical outcomes. We collected formalin-fixed paraffin-embedded tumors (FFPE) from women with TNBC. We analyzed the gene mutation profiles of the collected tumors and compared the results with individual patient's clinical histories and outcomes. Of 25 patients with TNBC, 24 (96%) identified as HL. Twenty-one (84%) had stage III-IV disease. The most commonly mutated genes were TP53, NOTCH1, NOTCH2, NOTCH3, AKT, MEP3K, PIK3CA, and EGFR. Compared with other international cancer databases, our study demonstrated statistically significant higher frequencies of these genes among HL women. Additionally, a worse clinical course was observed among patients whose tumors had mutations in NOTCH genes and PIK3CA. This study is the first to identify the most common genetic alterations among HL women with TNBC. Our data strongly support the notion that molecular drivers of breast cancer could differ in HL women compared with other ethnic backgrounds. Therefore, a deeper understanding of the biological mechanisms behind NOTCH gene and PIK3CA mutations may lead to a new treatment approach.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal de Mama/etnologia , Carcinoma Ductal de Mama/genética , Hispânico ou Latino/estatística & dados numéricos , Mutação , Neoplasias de Mama Triplo Negativas/etnologia , Neoplasias de Mama Triplo Negativas/genética , Carcinoma Ductal de Mama/patologia , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA