Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3426, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701499

RESUMO

Regulation of endosomal Toll-like receptor (TLR) responses by the chemokine CXCL4 is implicated in inflammatory and fibrotic diseases, with CXCL4 proposed to potentiate TLR responses by binding to nucleic acid TLR ligands and facilitating their endosomal delivery. Here we report that in human monocytes/macrophages, CXCL4 initiates signaling cascades and downstream epigenomic reprogramming that change the profile of the TLR8 response by selectively amplifying inflammatory gene transcription and interleukin (IL)-1ß production, while partially attenuating the interferon response. Mechanistically, costimulation by CXCL4 and TLR8 synergistically activates TBK1 and IKKε, repurposes these kinases towards an inflammatory response via coupling with IRF5, and activates the NLRP3 inflammasome. CXCL4 signaling, in a cooperative and synergistic manner with TLR8, induces chromatin remodeling and activates de novo enhancers associated with inflammatory genes. Our findings thus identify new regulatory mechanisms of TLR responses relevant for cytokine storm, and suggest targeting the TBK1-IKKε-IRF5 axis may be beneficial in inflammatory diseases.


Assuntos
Quinase I-kappa B , Fatores Reguladores de Interferon , Monócitos , Fator Plaquetário 4 , Proteínas Serina-Treonina Quinases , Receptor 8 Toll-Like , Epigênese Genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/imunologia , Receptor 8 Toll-Like/metabolismo
2.
J Immunol ; 206(7): 1631-1641, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674446

RESUMO

Inhibitors of the immunoproteasome (i-20S) have shown promise in mouse models of autoimmune diseases and allograft rejection. In this study, we used a novel inhibitor of the immunoproteasome, PKS3053, that is reversible, noncovalent, tight-binding, and highly selective for the ß5i subunit of the i-20S to evaluate the role that i-20S plays in regulating immune responses in vitro and in vivo. In contrast to irreversible, less-selective inhibitors, PKS3053 did not kill any of the primary human cell types tested, including plasmacytoid dendritic cells, conventional dendritic cells, macrophages, and T cells, all of which expressed genes encoding both the constitutive proteasome (c-20S) and i-20S. PKS3053 reduced TLR-dependent activation of plasmacytoid dendritic cells, decreasing their maturation and IFN-α response and reducing their ability to activate allogenic T cells. In addition, PKS3053 reduced T cell proliferation directly and inhibited TLR-mediated activation of conventional dendritic cells and macrophages. In a mouse model of skin injury that shares some features of cutaneous lupus erythematosus, blocking i-20S decreased inflammation, cellular infiltration, and tissue damage. We conclude that the immunoproteasome is involved in the activation of innate and adaptive immune cells, that their activation can be suppressed with an i-20S inhibitor without killing them, and that selective inhibition of ß5i holds promise as a potential therapy for inflammatory skin diseases such as psoriasis, cutaneous lupus erythematosus, and systemic sclerosis.


Assuntos
Células Dendríticas/imunologia , Inflamação/tratamento farmacológico , Lúpus Eritematoso Cutâneo/tratamento farmacológico , Macrófagos/imunologia , Inibidores de Proteassoma/uso terapêutico , Pele/patologia , Linfócitos T/imunologia , Animais , Movimento Celular , Células Cultivadas , Citotoxicidade Imunológica , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/efeitos dos fármacos
3.
Sci Rep ; 10(1): 16740, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028903

RESUMO

Chondrocyte apoptosis may have a pivotal role in the development of osteoarthritis. Interest has increased in the use of anti-apoptotic compounds to protect against osteoarthritis development. In this work, we investigated the effect of adrenomedullin (AM), a 52 amino-acid hormone peptide, and a 31 amino-acid truncated form, AM(22-52), on chondrocyte apoptosis. Bovine articular chondrocytes (BACs) were cultured under hypoxic conditions to mimic cartilage environment and then treated with Fas ligand (Fas-L) to induce apoptosis. The expression of AM and its calcitonin receptor-like receptor (CLR)/receptor activity-modifying protein (RAMP) (receptor/co-receptor) was assessed by immunostaining. We evaluated the effect of AM and AM(22-52) on Fas-L-induced chondrocyte apoptosis. FAS expression was appreciated by RT-qPCR and immunostainings. The expression of hypoxia-inducible factor 1α (HIF-1α), CLR and one co-receptor (RAMP2) was evidenced. With BACs under hypoxia, cyclic adenosine monophosphate production increased dose-dependently with AM stimulation. AM significantly decreased caspase-3 activity (mean 35% decrease; p = 0.03) as a marker of Fas-L-induced apoptosis. Articular chondrocytes treated with AM showed significantly reduced cell death, along with downregulated Fas expression and production, as compared with AM(22-52). AM decreased articular chondrocyte apoptosis by downregulating a Fas receptor. These findings may pave the way for novel therapeutic approaches in osteoarthritis.


Assuntos
Adrenomedulina/farmacologia , Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Proteína Ligante Fas/farmacologia , Fragmentos de Peptídeos/farmacologia , Adrenomedulina/metabolismo , Animais , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Cartilagem Articular/metabolismo , Bovinos , Condrócitos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor fas/metabolismo
4.
J Med Chem ; 63(21): 13103-13123, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095579

RESUMO

The immunoproteasome (i-20S) has emerged as a therapeutic target for autoimmune and inflammatory disorders and hematological malignancies. Inhibition of the chymotryptic ß5i subunit of i-20S inhibits T cell activation, B cell proliferation, and dendritic cell differentiation in vitro and suppresses immune responses in animal models of autoimmune disorders and allograft rejection. However, cytotoxicity to immune cells has accompanied the use of covalently reactive ß5i inhibitors, whose activity against the constitutive proteasome (c-20S) is cumulative with the time of exposure. Herein, we report a structure-activity relationship study of a class of noncovalent proteasome inhibitors with picomolar potencies and 1000-fold selectivity for i-20S over c-20S. Furthermore, these inhibitors are specific for ß5i over the other five active subunits of i-20S and c-20S, providing useful tools to study the functions of ß5i in immune responses. The potency of these compounds in inhibiting human T cell activation suggests that they may have therapeutic potential.


Assuntos
Dipeptídeos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Células HeLa , Humanos , Concentração Inibidora 50 , Cinética , Ativação Linfocitária/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
5.
HSS J ; 12(3): 255-260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27703420

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is characterized by a wide variety of symptoms and disease manifestations including joint pain, gastrointestinal dysfunction, interstitial lung disease, and cardiomyopathy. QUESTIONS/PURPOSES: Using the Scleroderma Health Assessment Questionnaire (SHAQ) and Short Form-36 (SF-36) we explored how patient-reported physical health, mental health, and functional status related to these clinical characteristics and to cytokine levels utilizing the Hospital for Special Surgery Scleroderma Registry. METHODS: In a cross-sectional study of 185 patients meeting the 2013 ACR/EULAR criteria for SSc, we compared disease features and patient-reported outcomes (PROs). Interleukin-6 (IL-6), interleukin-1ß (IL1ß), and tumor necrosis factor-α (TNFα) levels were assessed by luminex and ELISA assays in a subset of 32 patients. The Pearson correlation coefficient, Spearman correlation coefficient, two-sample t test or Wilcoxon rank sum test, ANOVA or Kuskal-Wallis test, and Pearson chi-squared or Fisher's exact test were performed as applicable to detect the association between disease manifestations, PROs, and blood biomarkers. RESULTS: The modified Rodnan skin score (MRSS) was positively correlated with SHAQ scores. Patients who had musculoskeletal involvement scored worse on both the SHAQ and SF-36. Lower levels of TNFα expression in PBMCs were also correlated with musculoskeletal involvement. No other significant correlations were found between clinical factors, PROs, and cytokine data. CONCLUSION: Musculoskeletal outcomes are a major determinant of quality of life and function in patients with SSc. These results emphasize the importance of musculoskeletal outcomes in clinical studies of SSc.

6.
PLoS One ; 7(3): e33543, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432033

RESUMO

OBJECTIVE: Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism. METHODS: OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody. RESULTS: Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2-3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade. CONCLUSION: The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA.


Assuntos
Doenças Ósseas Metabólicas/patologia , Osso e Ossos/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Osteoartrite/prevenção & controle , Proteínas ADAM/metabolismo , Proteína ADAMTS5 , Animais , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/complicações , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/enzimologia , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Humanos , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoprotegerina/metabolismo , Pamidronato , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico
7.
Arthritis Rheum ; 64(4): 1069-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22006509

RESUMO

OBJECTIVE: Adrenomedullin(22-52) is a truncated peptide derived from adrenomedullin, a growth factor with antiapoptotic and immunoregulatory properties. It can act as an agonist or an antagonist depending on cell type. Its in vivo effects are unknown, but adrenomedullin(22-52) could possess immunomodulatory properties. This study was undertaken to evaluate the effect of adrenomedullin(22-52) in a mouse model of arthritis. METHODS: DBA/1 mice with collagen-induced arthritis (CIA) were treated with 1.2 µg/gm adrenomedullin(22-52) , adrenomedullin, or saline at arthritis onset. Bone mineral density was measured at the beginning of the experiment and when mice were killed. Mouse joints were processed for histologic analysis and protein studies, and spleens were examined for Treg cell expression. Cytokine expression was studied in mouse joint tissue and serum. RESULTS: In mice with CIA, adrenomedullin and adrenomedullin(22-52) reduced clinical and histologic arthritis scores and shifted the pattern of articular and systemic cytokine expression from Th1 to Th2, as compared to untreated mice with CIA (controls). Tumor necrosis factor α, interleukin-6 (IL-6), and IL-17A levels were significantly decreased in the joints of mice with CIA treated with adrenomedullin or adrenomedullin(22-52) as compared to controls, whereas IL-4 and IL-10 levels were increased. Adrenomedullin(22-52) was more effective than adrenomedullin in modulating cytokine content and enhanced Treg cell function without changing Treg cell expression compared to controls. Adrenomedullin receptor binding and transcriptional adrenomedullin receptor expression were markedly increased in joints from controls, whereas adrenomedullin receptor binding was considerably decreased in treated animals. Mice with CIA treated with adrenomedullin or adrenomedullin(22-52) had considerably fewer apoptotic chondrocytes and diminished cartilage degradation. Adrenomedullin(22-52) completely prevented systemic bone loss by preserving osteoblastic activity, but without changes in osteoclastic activity. CONCLUSION: Our findings indicate that adrenomedullin(22-52) , which has no vasoactive or tumor-inducing effects, is a potent antiinflammatory and bone-protective agent in this arthritis model.


Assuntos
Adrenomedulina/uso terapêutico , Artrite Experimental/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Inflamação/tratamento farmacológico , Articulações/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Adrenomedulina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Receptores de Adrenomedulina/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA