Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Protoplasma ; 259(4): 905-916, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34596758

RESUMO

The individual impact of silicon (Si) and nitric oxide (NO) on secondary metabolism in several plant species has been reported, but their combined effect has never been evaluated yet. Therefore, in this study, single and combined impacts of NO and Si on the biosynthesis of rosmarinic acid (RA) and essential oil (EO) content in leaves of Salvia officinalis were investigated under both non-stress and Cu stress conditions. The results indicated that high Cu concentration decreased biomass and the content of polyphenols, but elevated electrolyte leakage, while lower Cu concentrations, especially 200 µM Cu, increased the content of polyphenols, EO, and antioxidant capacity in leaves of S. officinalis. The foliar application of sodium silicate (1 mM Si) and sodium nitroprusside (200 µM SNP as a NO donor) alone and particularly in combination improved shoot dry biomass, restored chlorophyll and carotenoids, increased EO content, the amounts of flavonoids, and phenolic compounds especially RA, and enhanced antioxidant capacity in the leaves of S. officinalis under both non-stress and Cu stress conditions. Copper treatment increased NO content, upregulated expression of PAL, TAT, and RAS genes, and enhanced phenylalanine ammonia-lyase activity in the leaves, which were responsible for improving the production of phenolic compounds, particularly rosmarinic acid. Foliar spraying with Si and SNP intensified these attributes. All responses were more pronounced when NO and Si were simultaneously applied under Cu stress. These findings suggest that NO and Si synergistically modulate secondary metabolism through upregulation of related gene expression and enzyme activities under both non-stress and Cu stress conditions.


Assuntos
Óleos Voláteis , Salvia officinalis , Antioxidantes/metabolismo , Cinamatos , Depsídeos , Óxido Nítrico/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Polifenóis/metabolismo , Salvia officinalis/genética , Salvia officinalis/metabolismo , Silício , Ácido Rosmarínico
3.
Plant Physiol Biochem ; 143: 286-298, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31539758

RESUMO

In this study, the effect of seed priming with sodium hydro sulfide (NaHS) and CaCl2 as well as the possible relationship between them in inducing post-germinative cross-adaptation in zucchini seedlings (cv Courgette d'Italie) were investigated. Results showed that Ni toxicity reduced plant growth and photosynthetic pigments, decreased the content of ascorbate (AsA) and total thiols, increased hydrogen peroxide (H2O2) content and electrolyte leakage (EL), up-regulated the transcription levels of Ca2+-dependent protein kinase (CDPK) and phytochelatin (PCs) genes and elevated H2S content in leaves of zucchini seedlings. Individual or combined seed priming with Ca2+ and NaHS improved the content of photosynthetic pigments and seedling biomass, reduced H2O2 content and EL, increased the content of AsA and total thiols, decreased ascorbate peroxidase activity and enhanced glutathione reductase activity in leaves. These findings suggest the last time effect of seed priming with Ca2+ and NaHS on inducing cross-adaptation in seedlings under Ni stress. H2S accumulation and other responses induced with Ca2+ in leaves were weakened with hypotaurine (HT as H2S scavenger), denoting seed priming with Ca2+ established cross-adaptation in a H2S-dependent manner. Seed priming with NaHS amplified CDPK transcripts in leaves of seedlings and seed priming with ethylene glycol tetraacetic acid (as Ca2+ chelator), lanthanum chloride and verapamil (as plasma membrane channel blockers) reduced transcript levels of CDPK and PCs genes and reversed impacts of seed priming with NaHS. These results indicated that the cross-adaptation induced with NaHS is mediated through Ca2+ signaling. Overall our findings suggest that two-side cross-talk between Ca2+ and H2S is involved in the acquisition of a signal memory in seed embryo cells which can be employed upon a later Ni-exposure and more strongly enhance AsA-GSH cycle, redox homeostasis and phytochelatin transcripts in leaves of zucchini seedlings grown from primed seeds.


Assuntos
Ácido Ascórbico/metabolismo , Cálcio/farmacologia , Sulfeto de Hidrogênio/farmacologia , Níquel/toxicidade , Plântula/efeitos dos fármacos , Plântula/metabolismo , Sementes/metabolismo , Glutationa/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sementes/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA