Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(9): 218, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153039

RESUMO

Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Cádmio/toxicidade , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/genética , Estresse Fisiológico/efeitos dos fármacos , Transporte Biológico , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
2.
Plant Physiol Biochem ; 214: 108878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968841

RESUMO

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.


Assuntos
Antioxidantes , Temperatura Baixa , Cucumis sativus , Glutationa , Mitocôndrias , Óxido Nítrico , Poliaminas , Cucumis sativus/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/fisiologia , Óxido Nítrico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Poliaminas/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
5.
Plant Physiol Biochem ; 208: 108468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507840

RESUMO

Cadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear. Here, we examined the effects of EGCG and Cd treatment on leaf photochemical efficiency, cell ultrastructure, essential element acquisition, antioxidant system, and secondary metabolism in tomato (Solanum lycopersicum L.). The results showed that O2•-, H2O2, and malondialdehyde levels increased after Cd treatment, but Fv/Fm decreased significantly, suggesting that Cd induced oxidative stress and photoinhibition. However, EGCG mitigated the adverse effects of Cd-induced phytotoxicity in both the roots and leaves. A decrease in ROS accumulation under EGCG + Cd treatment was mainly attributed to the significant enhancement in antioxidant enzyme activity, flavonoid content, and PHENYLALANINE AMMONIA-LYASE expression in roots. Moreover, EGCG reduced Cd content but increased some essential nutrient contents in tomato plants. Transmission electron microscopy-based observations revealed that EGCG treatment safeguards leaf and root cell ultrastructure under Cd stress. This implies that tomato plants subjected to Cd stress experienced advantageous effects upon receiving EGCG treatment. The present work elucidated critical mechanisms by which EGCG induces tolerance to Cd, thereby providing a basis for future investigations into environmentally sustainable agricultural practices in areas contaminated with heavy metals, for utilizing naturally occurring substances found in plants.


Assuntos
Catequina , Catequina/análogos & derivados , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cádmio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Homeostase , Catequina/farmacologia , Catequina/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo
6.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256755

RESUMO

Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control. Among the four shading treatments, double-layer-net shadings had the most positive impact on the tea quality, resulting in higher levels of amino acids but lower levels of tea polyphenols. Additionally, double-layer-net shadings provided more suitable microenvironments for tea plants. The tea leaves in T4 (double nets 50 cm above the plant canopy) contained 16.13 mg∙g-1 of umami and sweet amino acids, which was significantly higher than in other treatments. T4 had the lowest air temperature and the most suitable and stable soil water content. Interestingly, the ratio of red light to far-red light in T4 was only 1.65, much lower than other treatments, which warrants further study. In conclusion, the microenvironment induced by shading can greatly affect the tea quality, and double-layer-net shading is better for improving the quality of summer tea.

7.
Ecotoxicol Environ Saf ; 268: 115732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000301

RESUMO

Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.


Assuntos
Praguicidas , Solanum lycopersicum , Antioxidantes/metabolismo , Solanum lycopersicum/genética , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Oxirredução , Praguicidas/metabolismo , Plantas/metabolismo , Homeostase , Estresse Oxidativo
8.
J Hazard Mater ; 456: 131670, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236109

RESUMO

Cadmium (Cd) pollution is an increasingly serious problem in crop production. Although significant progress has been made to comprehend the molecular mechanism of phytochelatins (PCs)-mediated Cd detoxification, the information on the hormonal regulation of PCs is very fragmentary. In the present study, we constructed TRV-COMT, TRV-PCS, and TRV-COMT-PCS plants to further assess the function of CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and PHYTOCHELATIN SYNTHASE (PCS) in melatonin-induced regulation of plant resistance to Cd stress in tomato. Cd stress significantly decreased chlorophyll content and CO2 assimilation rate, but increased Cd, H2O2 and MDA accumulation in the shoot, most profoundly in PCs deficient TRV-PCS and TRV-COMT-PCS plants. Notably, Cd stress and exogenous melatonin treatment significantly increased endogenous melatonin and PC contents in non-silenced plants. Results also explored that melatonin could alleviate oxidative stress and enhance antioxidant capacity and redox homeostasis by conserving improved GSH:GSSG and ASA:DHA ratios. Moreover, melatonin improves osmotic balance and nutrient absorption by regulating the synthesis of PCs. This study unveiled a crucial mechanism of melatonin-regulated PC synthesis, persuaded Cd stress tolerance and nutrient balance in tomato, which may have potential implications for the enhancement of plant resistance to toxic heavy metal stress.


Assuntos
Melatonina , Solanum lycopersicum , Cádmio/toxicidade , Melatonina/farmacologia , Fitoquelatinas , Peróxido de Hidrogênio , Plantas , Homeostase
9.
J Hazard Mater ; 443(Pt A): 130212, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308936

RESUMO

Pesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants. Here, we found that exogenous melatonin treatment significantly reduced chlorothalonil residue by 41 % but suppression of endogenous melatonin accumulation increased chlorothalonil residue in tomato leaves. Moreover, melatonin increased photosynthesis, Fv/Fm, Calvin cycle enzyme activity, antioxidant enzyme activity, glutathione pool, and RESPIRATORY BURST HOMOLOG1 (RBOH1) expression in tomato leaves. However, the upregulation of RBOH1, CYP724B2, GST1, GST2, GSH and ABC, the increased glutathione concentrations and the activity of detoxification enzymes due to melatonin treatment were all significantly attenuated by the treatment with an NADPH oxidase inhibitor and a ROS scavenger, indicating a clear relationship between the reduction of pesticide residue and induction in detoxifying enzymes and genes upon melatonin treatment in an apoplastic H2O2-dependent manner. These results reveal that melatonin-induced reduction in chlorothalonil residue is mediated by H2O2 signaling in tomato leaves.


Assuntos
Melatonina , Resíduos de Praguicidas , Praguicidas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Resíduos de Praguicidas/metabolismo , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Praguicidas/metabolismo
10.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35883751

RESUMO

Iron (Fe) deficiency in plants is a major problem in agriculture. Therefore, we investigated both the physiological features and molecular mechanisms of plants' response to low-Fe (LF) stress along with the mitigation of LF with exogenous spermidine (Spd) in tomato plants. The results showed that exogenous Spd foliar application relieved the suppressing effect of LF stress on tomato plants by regulating the photosynthetic efficiency, chlorophyll metabolism, antioxidant levels, organic acid secretion, polyamine metabolism and osmoregulatory systems. Analysis of transcriptomic sequencing results revealed that the differentially expressed genes of iron-deficiency stress were mainly enriched in the pathways of phytohormone signaling, starch and sucrose metabolism and phenyl propane biosynthesis in both leaves and roots. Moreover, Spd-induced promotion of growth under LF stress was associated with upregulation in the expression of some transcription factors that are related to growth hormone response in leaves (GH3, SAUR, ARF) and ethylene-related signaling factors in roots (ERF1, ERF2). We propose that traits associated with changes in low-iron-tolerance genes can potentially be used to improve tomato production. The study provides a theoretical basis for dealing with the iron deficiency issue to develop efficient nutrient management strategies in protected tomato cultivation.

11.
J Hazard Mater ; 438: 129511, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809367

RESUMO

Toxic heavy metal cadmium (Cd) reduces crop yield and threatens human health via the food chain. The bioactive flavonoid 'Epigallocatechin-3-gallate' (EGCG) affects plant stress response; however, the function of EGCG in Cd tolerance and the molecular pathways remain largely unknown. Here, we revealed that root application of EGCG alleviated Cd stress in tomato plants. While Cd stress decreased Fv/Fm, ФPSII, photosynthetic rate, root growth, root vitality and biomass accumulation by increasing reactive oxygen species (ROS) accumulation and lipid peroxidation, exogenous EGCG minimized excessive ROS accumulation and oxidative stress by promoting the activity of antioxidant enzymes and redox poise in roots and leaves. Moreover, EGCG induced the transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and decreased Cd content and photoinhibition in leaves. Interestingly, similar to EGCG, exogenous H2O2 application also enhanced Cd tolerance; however, the application of an NADPH oxidase inhibitor, diphenyleneiodonium (DPI), aggravated Cd phytotoxicity and attenuated the beneficial effects of EGCG on plant tolerance to Cd stress, suggesting that root applied EGCG-induced expression of RBOH1 and associated H2O2 signaling mediate the EGCG-induced enhanced Cd tolerance. This work elucidates a fundamental mechanism behind EGCG-mediated Cd tolerance and contributes to our existing knowledge of stress resistance properties of EGCG in plants.


Assuntos
Solanum lycopersicum , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cádmio/metabolismo , Catequina/análogos & derivados , Humanos , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Plant Physiol Biochem ; 185: 390-400, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35785551

RESUMO

Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.


Assuntos
COVID-19 , Camellia sinensis , Catequina , Antocianinas/metabolismo , Cafeína , Camellia sinensis/metabolismo , Catequina/metabolismo , Humanos , Folhas de Planta/metabolismo , Polifenóis/metabolismo , SARS-CoV-2 , Chá
13.
Plant J ; 111(2): 440-456, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569132

RESUMO

Because of a high sensitivity to cold, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by cold stress. The NAC transcription factor (TF) family has been characterized as an important player in plant growth, development, and the stress response, but the role of NAC TFs in cold stress and their interaction with other post-transcriptional regulators such as microRNAs in cold tolerance remains elusive. Here, we demonstrated that SlNAM3, the predicted target of Sl-miR164a/b-5p, improved cold tolerance as indicated by a higher maximum quantum efficiency of photosystem II (Fv/Fm), lower relative electrolyte leakage, and less wilting in SlNAM3-overexpression plants compared to wild-type. Further genetic and molecular confirmation revealed that Sl-miR164a/b-5p functioned upstream of SlNAM3 by inhibiting the expression of the latter, thus playing a negative role in cold tolerance. Interestingly, this role is partially mediated by an ethylene-dependent pathway because either Sl-miR164a/b-5p silencing or SlNAM3 overexpression improved cold tolerance in the transgenic lines by promoting ethylene production. Moreover, silencing of the ethylene synthesis genes, SlACS1A, SlACS1B, SlACO1, and SlACO4, resulted in a significant decrease in cold tolerance. Further experiments demonstrated that NAM3 activates SlACS1A, SlACS1B, SlACO1, and SlACO4 transcription by directly binding to their promoters. Taken together, the present study identified the miR164a-NAM3 module conferring cold tolerance in tomato plants via the direct regulation of SlACS1A, SlACS1B, SlACO1, and SlACO4 expression to induce ethylene synthesis.


Assuntos
Solanum lycopersicum , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Antioxidants (Basel) ; 11(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35326106

RESUMO

Heavy metal cadmium (Cd) at high concentrations severely disturbs plant growth and development. The E3 ubiquitin ligase involved in protein degradation is critical for plant tolerance to abiotic stress, but the role of E3 ubiquitin ligases in Cd tolerance is largely unknown in tomato. Here, we characterized an E3 ubiquitin ligase gene Sl1, which was highly expressed in roots under Cd stress in our previous study. The subcellular localization of Sl1 revealed that it was located in plasma membranes. In vitro ubiquitination assays confirmed that Sl1 had E3 ubiquitin ligase activity. Knockout of the Sl1 gene by CRISPR/Cas9 genome editing technology reduced while its overexpression increased Cd tolerance as reflected by the changes in the actual quantum efficiency of PSII photochemistry (ΦPSII) and hydrogen peroxide (H2O2) accumulation. Cd-induced increased activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were compromised in sl1 mutants but were enhanced in Sl1 overexpressing lines. Furthermore, the content of Cd in both shoots and roots increased in sl1 mutants while reduced in Sl1 overexpressing plants. Gene expression assays revealed that Sl1 regulated the transcript levels of heavy metal transport-related genes to inhibit Cd accumulation. These findings demonstrate that Sl1 plays a critical role in regulating Cd tolerance by relieving oxidative stress and resisting heavy metal transportation in tomato. The study provides a new understanding of the mechanism of plant tolerance to heavy metal stress.

15.
Front Plant Sci ; 13: 1094451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618612

RESUMO

Iron (Fe) deficiency is a common abiotic stress in plants grown in alkaline soil that causes leaf chlorosis and affects root development due to low plant-available Fe concentration. Silicon (Si) is a beneficial element for plant growth and can also improve plant tolerance to abiotic stress. However, the effect of Si and regulatory mechanisms on tomato plant growth under Fe deficiency remain largely unclear. Here, we examined the effect of Si application on the photosynthetic capacity, antioxidant defense, sugar metabolism, and organic acid contents under Fe deficiency in tomato plants. The results showed that Si application promoted plant growth by increasing photosynthetic capacity, strengthening antioxidant defense, and reprogramming sugar metabolism. Transcriptomics analysis (RNA-seq) showed that Si application under Fe deficiency up-regulated the expression of genes related to antioxidant defense, carbohydrate metabolism and organic acid synthesis. In addition, Si application under Fe deficiency increased Fe distribution to leaves and roots. Combined with physiological assessment and molecular analysis, these findings suggest that Si application can effectively increase plant tolerance to low Fe stress and thus can be implicated in agronomic management of Fe deficiency for sustainable crop production. Moreover, these findings provide important information for further exploring the genes and underlying regulatory mechanisms of Si-mediated low Fe stress tolerance in crop plants.

16.
Physiol Plant ; 173(1): 449-459, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33616963

RESUMO

Heavy metal pollution not only decreases crop yield and quality, but also affects human health via the food chain. Ubiquitination-dependent protein degradation is involved in plant growth, development, and environmental interaction, but the functions of ubiquitin-ligase (E3) genes are largely unknown in tomato (Solanum lycopersicum L.). Here, we functionally characterized a RING E3 ligase gene, SlRING1, which positively regulates cadmium (Cd) tolerance in tomato plants. An in vitro ubiquitination experiment shows that SlRING1 has E3 ubiquitin ligase activity. The determination of the subcellular localization reveals that SlRING1 is localized at both the plasma membrane and the nucleus. Overexpression of SlRING1 in tomato increased the chlorophyll content, the net photosynthetic rate, and the maximal photochemical efficiency of photosystem II (Fv/Fm), but reduced the levels of reactive oxygen species and relative electrolyte leakage under Cd stress. Moreover, SlRING1 overexpression increased the transcript levels of CATALASE (CAT), DEHYDROASCORBATE REDUCTASE (DHAR), MONODEHYDROASCORBATE REDUCTASE (MDHAR), GLUTATHIONE (GSH1), and PHYTOCHELATIN SYNTHASE (PCS), which contribute to the antioxidant and detoxification system. Crucially, SlRING1 overexpression also reduced the concentrations of Cd in both shoots and roots. Thus, SlRING1-overexpression-induced enhanced tolerance to Cd is ascribed to reduced Cd accumulation and alleviated oxidative stress. Our findings suggest that SlRING1 is a positive regulator of Cd tolerance, which can be a potential breeding target for improving heavy metal tolerance in horticultural crops.


Assuntos
Cádmio , Solanum lycopersicum , Antioxidantes , Cádmio/toxicidade , Solanum lycopersicum/genética , Estresse Oxidativo , Ubiquitina-Proteína Ligases/genética
17.
Plant Sci ; 303: 110761, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487347

RESUMO

Seed germination is a vital stage in the plant life-cycle that greatly contributes to plant establishment. Melatonin has been shown to promote seed germination under various environmental stresses; however, the mechanism remains largely underexplored. Here, we reported that melatonin antagonized abscisic acid (ABA) to promote seed germination by regulating ABA and gibberellic acid (GA3) balance. Transcriptomic analysis revealed that such a role of melatonin was associated with Ca2+ and redox signaling. Melatonin pretreatment induced Ca2+ efflux accompanied by an up-regulation of vacuolar H+/Ca2+ antiporter 3 (CAX3). AtCAX3 deletion in Arabidopsis exhibited reduced Ca2+ efflux. Inhibition of Ca2+ efflux in the seeds of melon and Arabidopsis mutant AtCAX3 compromised melatonin-induced germination under ABA stress. Melatonin increased H2O2 accumulation, and H2O2 pretreatment decreased ABA/GA3 ratio and promoted seed germination under ABA stress. However, complete inhibition of H2O2 accumulation abolished melatonin-induced ABA and GA3 balance and seed germination. Our study reveals a novel regulatory mechanism in which melatonin counteracts ABA to induce seed germination that essentially involves CAX3-mediated Ca2+ efflux and H2O2 accumulation, which, in turn, regulate ABA and GA3 balance by promoting ABA catabolism and/or GA3 biosynthesis.


Assuntos
Ácido Abscísico/antagonistas & inibidores , Cálcio/metabolismo , Germinação/fisiologia , Peróxido de Hidrogênio/metabolismo , Melatonina/fisiologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Giberelinas/metabolismo , Glutationa/metabolismo , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA
18.
J Hazard Mater ; 403: 123922, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264973

RESUMO

Arsenic is a toxic metalloid for both animals and plants. The signaling molecule melatonin can enhance abiotic stress tolerance, but the effects of As and melatonin on tea plants and the mechanisms of resilience remain unclear. Here we report that excess As causes severe oxidative stress in tea leaves as revealed by significantly reduced maximal photochemical efficiency of photosystem-II, and increased reactive oxygen species accumulation and lipid peroxidation. However, exogenous melatonin application alleviated the As phytotoxicity and increased the anthocyanin content upto 69.4 % by selectively upregulating the expression of its biosynthetic genes such as CsCHS and CsANS. Comparison of As tolerance between two tea genotypes differing in basal levels of anthocyanin revealed that a tea cultivar with increased anthocyanin content, Zijuan (ZJ), showed enhanced tolerance to As stress compared with Longjing 43 (LJ43) that contained relatively low levels of anthocyanin. Interestingly, exogenous anthocyanin also enhanced As tolerance in LJ43, but exogenous melatonin did not improve As tolerance in ZJ genotype. Analysis of As content in tea leaves revealed that melatonin significantly reduced As content in LJ43 but not in ZJ, suggesting that melatonin-enhanced tolerance to As stress is largely dependent on the basal levels of anthocyanin in tea plants.


Assuntos
Arsênio , Camellia sinensis , Melatonina , Antocianinas , Antioxidantes , Arsênio/toxicidade , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
19.
J Biotechnol ; 324: 239-247, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33186659

RESUMO

The E3 ubiquitin ligases participate in the degradation of plant proteins and play a regulatory role in stress response. However, the role of tomato E3 ubiquitin ligase genes in plant response to heavy metal stress remains elusive. Here, we identified 17 tomato E3 ubiquitin ligase genes using blast analysis of highly expressed E3 ubiquitin ligase genes of Arabidopsis thaliana. Through organ expression analysis, three E3 ubiquitin ligase genes with higher expression levels in roots were further screened out, and they were named Sl1, SlRHE1, and SlRING1. Among these three genes, SlRING1 expression was the highest in response to cadmium (Cd) stress. Silencing SlRING1 significantly decreased chlorophyll content, Fv/Fm, photosynthetic rate, and biomass accumulation under Cd stress. The levels of H2O2, electrolyte leakage, and malondialdehyde significantly increased in SlRING1-silenced plants under Cd stress compared with that in non-silenced tomato plants. Cd stress-induced increases in the transcript levels of antioxidant and detoxification genes such as CAT, DHAR, MDHAR, GSH, and PCS were compromised by SlRING1 silencing. Moreover, Cd accumulation in shoots and roots significantly increased in SlRING1-silenced plants compared with non-silenced tomato plants. These findings suggest that SlRING1 plays a positive role in plant tolerance to Cd stress in tomato.


Assuntos
Solanum lycopersicum , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Front Plant Sci ; 11: 579772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193523

RESUMO

Plants intensely modulate respiration when pathogens attack, but the function of mitochondrial respiration-related genes in plant-bacteria interaction is largely unclear. Here, the functions of α-ketoglutarate dehydrogenase (α-kGDH) E2 subunit and alternative oxidase (AOX) were investigated in the interaction between tomato and the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). Pst inoculation suppressed the transcript abundance of α-kGDH E2, but enhanced AOX expression and salicylic acid (SA) accumulation. Gene silencing and transient overexpression approaches revealed that plant susceptibility to Pst was significantly reduced by silencing α-kGDH E2 in tomato, but increased by overexpressing α-kGDH E2 in Nicotiana benthamiana, whereas silencing or overexpressing of AOX1a did not affect plant defense. Moreover, silencing octanoyltransferase (LIP2), engaged in the lipoylation of α-kGDH E2, significantly reduced disease susceptibility and hydrogen peroxide accumulation. Use of transgenic NahG tomato plants that cannot accumulate SA as well as the exogenous SA application experiment evidenced that α-kGDH E2 acts downstream of SA defense pathway. These results demonstrate tomato α-kGDH E2 plays a negative role in plant basal defense against Pst in an AOX-independent pathway but was associated with lipoylation and SA defense pathways. The findings help to elucidate the mechanisms of mitochondria-involved plant basal immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA