Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Arthritis Rheum ; 64(7): 2404-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22294469

RESUMO

OBJECTIVE: Tissue glucocorticoid (GC) levels are regulated by the GC-activating enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). This enzyme is expressed in cells and tissues arising from mesenchymal stromal cells. Proinflammatory cytokines dramatically increase expression of 11ß-HSD1 in stromal cells, an effect that has been implicated in inflammatory arthritis, osteoporosis, obesity, and myopathy. Additionally, GCs act synergistically with proinflammatory cytokines to further increase enzyme expression. The present study was undertaken to investigate the mechanisms underlying this regulation. METHODS: Gene reporter analysis, rapid amplification of complementary DNA ends (RACE), chemical inhibition experiments, and genetic disruption of intracellular signaling pathways in mouse embryonic fibroblasts (MEFs) were used to define the molecular mechanisms underlying the regulation of 11ß-HSD1 expression. RESULTS: Gene reporter, RACE, and chemical inhibitor studies demonstrated that the increase in 11ß-HSD1 expression with tumor necrosis factor α (TNFα)/interleukin-1ß (IL-1ß) occurred via the proximal HSD11B1 gene promoter and depended on NF-κB signaling. These findings were confirmed using MEFs with targeted disruption of NF-κB signaling, in which RelA (p65) deletion prevented TNFα/IL-1ß induction of 11ß-HSD1. GC treatment did not prevent TNFα-induced NF-κB nuclear translocation. The synergistic enhancement of TNFα-induced 11ß-HSD1 expression with GCs was reproduced by specific inhibitors of p38 MAPK. Inhibitor and gene deletion studies indicated that the effects of GCs on p38 MAPK activity occurred primarily through induction of dual-specificity phosphatase 1 expression. CONCLUSION: The mechanism by which stromal cell expression of 11ß-HSD1 is regulated is novel and distinct from that in other tissues. These findings open new opportunities for development of therapeutic interventions aimed at inhibiting or stimulating local GC levels in cells of mesenchymal stromal lineage during inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Glucocorticoides/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Artrite Reumatoide/patologia , Células Cultivadas , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , NF-kappa B/metabolismo , Osteoartrite/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
2.
Blood ; 119(9): 2083-92, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22234686

RESUMO

T-cell immunity is important for controlling Kaposi sarcoma-associated herpesvirus (KSHV) diseases such as the endothelial cell malignancy Kaposi sarcoma, or the B-cell malignancy, primary effusion lymphoma (PEL). However, little is known about KSHV-specific T-cell immunity in healthy donors and immune control of disease. Using PBMCs from healthy KSHV-infected donors, we found weak ex vivo responses to the KSHV latent antigens LANA, vFLIP, vCyclin, and Kaposin, with LANA most frequently recognized. CD4(+) T-cell clones specific to LANA, a protein expressed in all KSHV-infected cells and malignancies, were established to determine whether they could recognize LANA-expressing cells. B-cell targets expressing or fed LANA protein were consistently recognized by the clones; however, most PEL cell lines were not. PELs express the KSHV protein vIRF3 that inhibits promoter function of the HLA class II transactivator, decreasing expression of genes controlled by this transactivator. Re-expressing the class II transactivator in the PELs increased expression of downstream targets such as HLA class II and restored recognition but not killing by the LANA-specific clones. We suggest that PELs are poorly controlled in vivo because of inefficient recognition and killing by T cells.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Herpesvirus Humano 8/imunologia , Imunidade Celular/imunologia , Linfoma de Efusão Primária/imunologia , Proteínas Nucleares/imunologia , Antígenos Virais/genética , Células Cultivadas , Herpesvirus Humano 8/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Linfoma de Efusão Primária/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/imunologia , Doadores de Tecidos , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA