Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(15): 6026-6035, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380437

RESUMO

Label-free proteomics with trace clinical samples provides a wealth of actionable insights for personalized medicine. Clinically acquired primary cells, such as circulating tumor cells (CTCs), are usually with low abundance that is prohibitive for conventional label-free proteomics analysis. Here, we present a sickle-like inertial microfluidic system for online rare cell separation and tandem label-free proteomics (namely, Orcs-proteomics). Orcs-proteomics adopts a buffer system with 0.1% N-dodecyl ß-d-maltoside (DDM), 1 mM Tris (2-carboxyethyl) phosphine (TCEP), and 2 mM 2-chloroacetamide (CAA) for cell lysis and reductive alkylation. We demonstrate the application of Orcs-proteomics with 293T cells and manage to identify 913, 1563, 2271, and 2770 protein groups with 4, 13, 68, and 119 cells, respectively. We then spike MCF7 cells with white blood cells (WBCs) to simulate the patient's blood sample. Orcs-proteomics identifies more than 2000 protein groups with an average of 61 MCF7 cells. We further recruit two advanced breast cancer patients and collect 5 and 7 CTCs from each patient through minimally invasive blood drawing. Orcs-proteomics manages to identify 973 and 1135 protein groups for each patient. Therefore, Orcs-proteomics empowers rare cells simultaneously to be separated and counted for proteomics and provides technical support for personalized treatment decision making with rare primary patient samples.


Assuntos
Anemia Falciforme , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular , Humanos , Microfluídica , Células Neoplásicas Circulantes/patologia , Proteômica
2.
Biosens Bioelectron ; 201: 113965, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016111

RESUMO

Accurate enumeration of circulating tumor cells (CTCs) in cancer patient's blood functions as a form of "liquid biopsy", which is pivotal for cancer screening, prognosis, and diagnosis. Herein, we demonstrate a novel antibody functionalized microfluidic (AFM) chip that rapidly and accurately qualifies CTCs from breast cancer patient's whole blood. The AFM chip consists of three buffering zones, and four main capturing zones filled with equilateral triangular pillars and periodically distributed obstacles. We validate the AFM chip with three Epithelial cell adhesion molecule (EpCAM) positive cancer cell lines, including breast (MCF-7), prostate (PC3), and lung cancer cell lines (A549), achieving capture efficiencies of 99.5%, 98.5%, and 96.72%, respectively, at a flow rate of 0.6 mL/hour. We further confirm the efficacy of the AFM chip with five advanced breast cancer patients' whole blood to capture EpCAM+/CK19+/CD45-/DAPI + CTCs. Interestingly, high number of CTCs were identified from each patient's 1 mL whole blood (595-2270), The AFM chip is highly efficient at rapidly capturing CTCs from cancer patients' whole blood without requiring extra equipment, which is critically beneficial for clinical application.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular , Molécula de Adesão da Célula Epitelial , Humanos , Masculino , Microfluídica
3.
Anal Chem ; 92(24): 16170-16179, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232155

RESUMO

Circulating tumor cells (CTCs) are rare cells existing in the bloodstream with a relatively low number, which facilitate as a predictor of cancer progress. However, it is difficult to obtain highly purified intact CTCs with desired viability due to the low percentage of CTCs among blood cells. In this work, we demonstrate a novel self-amplified inertial focused (SAIF) microfluidic chip that enables size-based, high-throughput, label-free separation of CTCs from a patient's blood. The SAIF chip introduced in this study demonstrated the feasibility of an extremely narrow zigzag channel (with 40 µm channel width) connected with two expansion regions to effectively separate different-sized cells with amplified separation distance. The chip performance was optimized with different-sized polystyrene (PS) particles and blood cells spiked with three different types of cancer cells. The separation efficiencies for blood cells and spiked cancer cells are higher than 80%. Recovery rates of cancer cells were tested by spiking 1500 lung cancer cells (A549), breast cancer cells (MCF-7), and cervical cancer cells (HeLa) separately to 3 mL 0.09% saline with 3 × 106 white blood cells (WBCs). The recovery rates for larger cells (MCF-7 and HeLa) were 79.1 and 85.4%, respectively. Viabilities of the cells harvested from outlets were all higher than 97% after culturing for 24, 48, and 72 h. The SAIF chip performance was further confirmed using the real clinical patient blood samples from four lung cancer patients. Theoretical force balance analysis in physics, computational simulations, and experimental observations indicate that the SAIF chip is simple but effective, and high-throughput separation CTCs can be readily achieved without complex structures.


Assuntos
Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes/patologia , Actinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA