Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101890, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378132

RESUMO

The unfolded protein response (UPR) is an adaptation mechanism activated to resolve transient accumulation of unfolded/misfolded proteins in the endoplasmic reticulum. Failure to resolve the transient accumulation of such proteins results in UPR-mediated programmed cell death. Loss of tumor suppressor gene or oncogene addiction in cancer cells can result in sustained higher basal UPR levels; however, it is not clear if these higher basal UPR levels in cancer cells can be exploited as a therapeutic strategy. We hypothesized that covalent modification of surface-exposed cysteine (SEC) residues could simulate unfolded/misfolded proteins to activate the UPR, and that higher basal UPR levels in cancer cells would provide the necessary therapeutic window. To test this hypothesis, here we synthesized analogs that can covalently modify multiple SEC residues and evaluated them as UPR activators. We identified a spirocyclic dimer, SpiD7, and evaluated its effects on UPR activation signals, that is, XBP1 splicing, phosphorylation of eIF2α, and a decrease in ATF 6 levels, in normal and cancer cells, which were further confirmed by RNA-Seq analyses. We found that SpiD7 selectively induced caspase-mediated apoptosis in cancer cells, whereas normal cells exhibited robust XBP1 splicing, indicating adaptation to stress. Furthermore, SpiD7 inhibited the growth of high-grade serous carcinoma cell lines ~3-15-fold more potently than immortalized fallopian tube epithelial (paired normal control) cells and reduced clonogenic growth of high-grade serous carcinoma cell lines. Our results suggest that induction of the UPR by covalent modification of SEC residues represents a cancer cell vulnerability and can be exploited to discover novel therapeutics.


Assuntos
Apoptose , Carcinoma , Resposta a Proteínas não Dobradas , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos
2.
Semin Cancer Biol ; 86(Pt 3): 1175-1185, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35189322

RESUMO

Tumor heterogeneity is a predominant feature of hepatocellular carcinoma (HCC) that plays a crucial role in chemoresistance and limits the efficacy of available chemo/immunotherapy regimens. Thus, a better understanding regarding the molecular determinants of tumor heterogeneity will help in developing newer strategies for effective HCC management. Chemokines, a sub-family of cytokines are one of the key molecular determinants of tumor heterogeneity in HCC and are involved in cell survival, growth, migration, and angiogenesis. Herein, we provide a panoramic insight into the role of chemokines in HCC heterogeneity at genetic, epigenetic, metabolic, immune cell composition, and tumor microenvironment levels and its impact on clinical outcomes. Interestingly, our in-silico analysis data showed that expression of chemokine receptors impacts infiltration of various immune cell populations into the liver tumor and leads to heterogeneity. Thus, it is evident that aberrant chemokines clouding impacts HCC tumor heterogeneity and understanding this phenomenon in depth could be harnessed for the development of personalized medicine strategies in future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Quimiocinas/metabolismo , Microambiente Tumoral/genética , Neovascularização Patológica
3.
J Med Chem ; 60(8): 3484-3497, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28368585

RESUMO

l-Vasicine is a quinazoline alkaloid with an electron dense ring and additional functionalities in its structure. Employing target oriented synthesis (TOS) based on in silico studies, molecules with significant docking scores containing different derivatives of l-vasicine as caps were synthesized. Interestingly, one molecule, i.e., 4a, which contained 3-hyroxypyrrolidine as a cap group and a six carbon long aliphatic chain as a linker was found to inhibit HDACs. 4a showed more specificity toward class I HDAC isoforms. Also 4a was found to be less cytotoxic toward normal cell lines as compared to cancer cell lines. 4a inhibited cancer cell growth and induced cell death by various mechanisms. However, 4a was found to induce cell death independent of ROS generation, and unlike many natural product based HDAC inhibitors, 4a was found to be nontoxic under in vivo conditions. Importantly, we for the first time report the possibility of using a 3-hydroxypyrrolidine cap for the synthesis of HDAC inhibitors with good potency.


Assuntos
Alcaloides/química , Antineoplásicos/química , Inibidores de Histona Desacetilases/química , Quinazolinas/química , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Quinazolinas/farmacologia
4.
Bioorg Med Chem Lett ; 24(19): 4729-4734, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25176189

RESUMO

The synthesis and bio-evaluation of naturally occurring boswellic acids (BAs) as an alternate CAP for the design of new HDAC inhibitors is described. All the compounds were screened against a panel of human cancer cell lines to identify leads, which were subsequently examined for their potential to inhibit HDACs. The identified lead compound showed IC50 value of 6µm for HDACs, found to induce G1 cell cycle arrest at significantly low concentration (1µM) and caused significant loss in mitochondrial membrane potential at 5 and 10µM. Furthermore, specific interactions of the lead molecule inside the catalytic domain were also studied through in silico molecular modeling.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HL-60 , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
5.
Anticancer Agents Med Chem ; 13(10): 1552-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23438828

RESUMO

Cancer is a diverse class of diseases which differ widely in their cause and biology. The aberrant behavior of cancer reflects up regulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Phosphoinositide-3-kinase(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway controls various biological processes that are important for normal functioning of the cell via cell cycle progression, survival, migration, transcription, translation and metabolism. However, PI3K signaling pathway is dysregulated almost in all cancers which is due to the amplification and genetic mutation of PI3K gene, encoding catalytic and regulatory subunit of PI3K isoforms. The current review focuses on the structural features of various PI3K isoforms including Akt and mTOR and their inhibition using specific small molecule inhibitors in an attempt to achieve an attractive target for cancer prevention and chemotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Subunidades Proteicas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Terapia de Alvo Molecular , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
6.
DNA Cell Biol ; 31 Suppl 1: S62-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22462686

RESUMO

Cancer is a pathologic condition that involves genetic and epigenetic events culminating in neoplastic transformation. Alteration in epigenetic events that regulate the transcriptional activity of genes associated with various signaling pathways can influence multiple stages of tumorigenesis. In cancer cells, an imbalance often exists between histone acetyl transferase and histone deacetylase (HDAC) activities, and current research focuses actively on seeking competitive HDAC inhibitors (HDACi) for chemotherapeutic intervention. HDACi are proving useful for cancer prevention and therapy by virtue of their ability to reactivate the expression of epigenetically silenced genes, including those involved in differentiation, cell cycle regulation, apoptosis, angiogenesis, invasion, and metastasis. Furthermore, epidemiological studies suggest that different diets such as intake of cruciferous vegetables may lower the risk of different cancers, and there is growing interest in identifying the specific chemoprotective constituents and mechanistic insights of their action. Interestingly, it has been observed that cancer cells are more sensitive than nontransformed cells to apoptotic induction by some HDACi. Although the mechanistic basis for this sensitivity is unclear, yet HDACi have emerged as important epigenetic target for single and combinatorial chemotherapy. HDACi derived from diverse sources such as microbial, dietary, and synthetic increase acetylation level of cells and bring about anti-proliferative and apoptotic effects specific to cancer cells by way of their role in cell cycle regulation and expression of epigenetically silenced genes.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Acetilação/efeitos dos fármacos , Tratamento Farmacológico/métodos , Tratamento Farmacológico/tendências , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Neoplasias/genética
7.
Steroids ; 76(10-11): 1213-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21669217

RESUMO

Regio-/stereoselective Michael addition to ring A of withaferin-A was performed using an optimized reaction procedure to synthesise a library of 2,3-dihydro,3-ß-substituted withaferin-A derivatives. The analogues thus obtained were evaluated for in vitro cytotoxicity against various human cancer cell lines. 3-Azido analogue exhibited 35-fold increase (IC(50)=0.02-1.9 µM) in cytotoxicity against almost the entire cell lines tested when compared to the parent molecule. However, further modifications of 3-azido analogue with various alkynes under Husigen's cycloaddition conditions generated a variety of triazole derivatives with reduced cytotoxicity.


Assuntos
Vitanolídeos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Vitanolídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA