Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
mBio ; 12(1)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653937

RESUMO

The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications.IMPORTANCE Extraintestinal pathologies caused by highly virulent strains of E. coli amount to clinical implications with high morbidity and mortality rates. Pathogenic E. coli strains are evolving with the horizontal acquisition of mobile genetic elements, including pathogenicity islands such as the pks island, which produces the genotoxin colibactin, resulting in severe clinical outcomes, including colorectal cancer progression. The current study encompasses high-throughput comparative genomics and phylogenetic analyses to address the questions pertaining to the acquisition and evolution pattern of the genomic island in different E. coli subtypes. It is crucial to gain insights into the distribution, transfer, and maintenance of pathogenic islands, as they harbor multiple virulence genes involved in pathogenesis and clinical implications of the infection.


Assuntos
Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Evolução Molecular , Genoma Bacteriano , Ilhas Genômicas , Genômica , Biologia Computacional/métodos , DNA Intergênico , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Estudo de Associação Genômica Ampla , Fenótipo , Filogenia , Prevalência , Virulência/genética , Fatores de Virulência/genética
2.
Helicobacter ; 26(2): e12777, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368895

RESUMO

Helicobacter pylori is a major chronic health problem, infecting more than half of the population worldwide. H. pylori infection is linked with various clinical complications ranging from gastritis to gastric cancer. The resolution of gastritis and peptic ulcer appears to be linked with the eradication of H. pylori. However, resistance to antibiotics and eradication failure rates are reaching alarmingly high levels. This calls for urgent action in finding alternate methods for H. pylori eradication. Here, we discuss the recently identified mechanism of H. pylori known as cholesterol glucosylation, mediated by the enzyme cholesterol-α-glucosyltransferase, encoded by the gene cgt. Cholesterol glucosylation serves several functions that include promoting immune evasion, enhancing antibiotic resistance, maintaining the native helical morphology, and supporting functions of prominent virulence factors such as CagA and VacA. Consequently, strategies aiming at inhibition of the cholesterol glucosylation process have the potential to attenuate the potency of H. pylori infection and abrogate H. pylori immune evasion capabilities. Knockout of H. pylori cgt results in unsuccessful colonization and elimination by the host immune responses. Moreover, blocking cholesterol glucosylation can reverse antibiotic susceptibility in H. pylori. In this work, we review the main roles of cholesterol glucosylation in H. pylori and evaluate whether this mechanism can be targeted for the development of alternate methods for eradication of H. pylori infection.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Colesterol , Glucosiltransferases , Humanos
3.
Helicobacter ; 26(1): e12766, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073485

RESUMO

Helicobacter pylori, a Gram-negative bacterium, is associated with a wide range of gastric diseases such as gastritis, duodenal ulcer, and gastric cancer. The prevalence of H pylori and risk of disease vary in different parts of the world based on the prevailing bacterial lineage. Here, we present a contextual and comparative genomics analysis of 20 clinical isolates of H pylori from patients in Bangladesh. Despite a uniform host ethnicity (Bengali), isolates were classified as being part of the HpAsia2 (50%) or HpEurope (50%) population. Out of twenty isolates, eighteen isolates were cagA positive, with two HpEurope isolates being cagA negative, three EPIYA motif patterns (AB, AB-C, and ABC-C) were observed among the cagA-positive isolates. Three vacA genotypes were observed with the s1m1i1dic1 genotype observed in 75% of isolates; the s1m2i1d1c2 and s2m2i2d2c2 genotypes were found to be 15% and 10% of isolates, respectively. The non-virulent genotypes s2m2i2d2c2 was only observed in HpEurope population isolates. Genotypic analysis of oipA gene, present in all isolates, revealed five different patterns of the CT repeat; all HpAsia2 isolates were in "ON" while 20% of HpEurope isolates were genotypically "OFF." The three blood group antigen binding adhesins encoded genes (bab genes) examined and we observed that the most common genotype was (babA/babB/-) found in eight isolates, notably six were HpAsia2 isolates. The babA gene was found in all HpAsia2 isolates but present in only half of the HpEurope isolates. In silico antibiotic susceptibility analysis revealed that 40% of the strains were multi-drug resistant. Mutations associated with resistance to metronidazole, fluoroquinolone, and clarithromycin were detected 90%, 45%, and 5%, respectively, in H pylori strain. In conclusion, it is evident that two populations of H pylori with similar antibiotic profiles are predominant in Bangladesh, and it appears that genotypically the HpAisa2 isolates are potentially more virulent than the HpEurope isolates.


Assuntos
Gastrite , Genoma Bacteriano , Infecções por Helicobacter , Helicobacter pylori , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Bangladesh , Farmacorresistência Bacteriana , Genômica , Genótipo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos
4.
Helicobacter ; 25(5): e12720, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32668502

RESUMO

BACKGROUND: Fifty percent of the world's population surves as a host for Helicobacter pylori, gastric cancer causing bacteria, that colonizes the gastric region of digestive tract. It has a remarkable capacity to infect the host stomach for the entire lifetime despite an activated host immune response. METHODS: In this study, we have performed the virtual screening analysis of protein-inhibitor binding between the glycosyl transferase enzymes of Helicobacter pylori (CapJ or HP0421) and a corresponding library of inhibitors in the known substrate-binding pockets. We have docked our library of ligands consisting of cholesterol backbone with CapJ protein and identified several ligands' interacting amino acid residues present in active site pocket(s) of the protein. RESULTS: In most of the cases, the ligands showed an interaction with the residues of the same pocket of the enzyme. Top three (03) hits were filtered out from the whole data set, which might act as potent inhibitors of the enzyme-substrate reaction. CONCLUSIONS: This study describes a new possibility by which colonization of H. pylori can be limited. The reported evidence suggests that comprehensive knowledge and wet laboratory validation of these inhibitors are needed in order to develop them as lead molecules.


Assuntos
Colesterol/análogos & derivados , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/metabolismo , Infecções por Helicobacter/microbiologia , Modelos Moleculares , Bases de Dados de Proteínas , Helicobacter pylori , Humanos , Ligantes , Ligação Proteica , Domínios Proteicos
5.
Int J Med Microbiol ; 309(8): 151353, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521502

RESUMO

Tuberculosis (TB) is the deadly infectious disease challenging the public health globally and its impact is further aggravated by co-infection with HIV and the emergence of drug resistant strains of Mycobacterium tuberculosis. In this study, we attempted to characterise the Rv2004c encoded protein, a member of DosR regulon, for its role in drug resistance. In silico docking analysis revealed that Rv2004c binds with streptomycin (SM). Phosphotransferase assay demonstrated that Rv2004c possibly mediates SM resistance through the aminoglycoside phosphotransferase activity. Further, E. coli expressing Rv2004c conferred resistance to 100µM of SM in liquid broth cultures indicating a mild aminoglycoside phosphotransferase activity of Rv2004c. Moreover, we investigated the role of MSMEG_3942 (an orthologous gene of Rv2004c) encoded protein in intracellular survival, its effect on in-vitro growth and its expression in different stress conditions by over expressing it in Mycobacterium smegmatis (M. smegmatis). MSMEG_3942 overexpressing recombinant M. smegmatis strains grew faster in acidic medium and also showed higher bacillary counts in infected macrophages when compared to M. smegmatis transformed with vector alone. Our results are likely to contribute to the better understanding of the involvement of Rv2004c in partial drug resistance, intracellular survival and adaptation of bacilli to stress conditions.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Macrófagos/microbiologia , Mycobacterium smegmatis/efeitos dos fármacos , Proteínas Quinases/genética , Estreptomicina/farmacologia , Proteínas de Ligação a DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Canamicina Quinase/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Ligação Proteica , Regulon , Células THP-1
6.
mBio ; 9(6)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482827

RESUMO

Infection of the human stomach caused by Helicobacter pylori is very common, as the pathogen colonizes more than half of the world's population. It is associated with varied outcomes of infection, such as peptic ulcer disease, gastric ulcers, and mucosa-associated lymphoid tissue lymphoma, and is generally considered a risk factor for the development of gastric adenocarcinoma. Cholesteryl glucosides (CGs) constitute a vital component of the cell wall of H. pylori and contribute to its pathogenicity and virulence. The hp0421 gene, which encodes cholesteryl-α-glucoside transferase (CGT), appears critical for the enzymatic function of integrating unique CGs into the cell wall of H. pylori, and deletion of this gene leads to depletion of CGs and their variants. Herein, we report that the deletion of hp0421 and consequent deficiency of cholesterol alter the morphology, shape, and cell wall composition of H. pylori cells, as demonstrated by high-resolution confocal microscopy and flow cytometry analyses of two different type strains of H. pylori, their isogenic knockouts as well as a reconstituted strain. Moreover, measurement of ethidium bromide (EtBr) influx by flow cytometry showed that lack of CGs increased cell wall permeability. Antimicrobial susceptibility testing revealed that the hp0421 isogenic knockout strains (Hp26695Δ421 and Hp76Δ421) were sensitive to antibiotics, such as fosfomycin, polymyxin B, colistin, tetracycline, and ciprofloxacin, in contrast to the wild-type strains that were resistant to the above antibiotics and tended to form denser biofilms. Lipid profile analysis of both Hp76 and Hp76Δ421 strains showed an aberrant profile of lipopolysaccharides (LPS) in the Hp76Δ421 strain. Taken together, we herein provide a set of mechanistic evidences to demonstrate that CGs play critical roles in the maintenance of the typical spiral morphology of H. pylori and its cell wall integrity, and any alteration in CG content affects the characteristic morphological features and renders the H. pylori susceptible to various antibiotics.IMPORTANCEHelicobacter pylori is an important cause of chronic gastritis leading to peptic ulcer and is a major risk factor for gastric malignancies. Failure in the eradication of H. pylori infection and increasing antibiotic resistance are two major problems in preventing H. pylori colonization. Hence, a deeper understanding of the bacterial survival strategies is needed to tackle the increasing burden of H. pylori infection by an appropriate intervention. Our study demonstrated that the lack of cholesteryl glucosides (CGs) remarkably altered the morphology of H. pylori and increased permeability of the bacterial cell wall. Further, this study highlighted the substantial role of CGs in maintaining the typical H. pylori morphology that is essential for retaining its pathogenic potential. We also demonstrated that the loss of CGs in H. pylori renders the bacterium susceptible to different antibiotics.


Assuntos
Parede Celular/metabolismo , Colesterol/análogos & derivados , Glucosiltransferases/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colesterol/metabolismo , Citometria de Fluxo , Deleção de Genes , Teste de Complementação Genética , Glucosiltransferases/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Confocal , Permeabilidade
7.
Drug Des Devel Ther ; 12: 1053-1063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29750018

RESUMO

BACKGROUND: Drug combination therapy to treat cancer is a strategic approach to increase successful treatment rate. Optimizing combination regimens is vital to increase therapeutic efficacy with minimal side effects. MATERIALS AND METHODS: In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1'S-1'-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP) and cisplatin (CDDP) against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB) and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression. RESULTS: All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation. CONCLUSION: Double and triple combination regimens that target induction of the same death mechanism with reduced dosage of each drug could potentially be clinically beneficial in reducing dose-related toxicities.


Assuntos
Antibacterianos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Álcoois Benzílicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Mycobacterium/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Antibacterianos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Álcoois Benzílicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisplatino/química , Difusão , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , NF-kappa B/metabolismo , Relação Estrutura-Atividade
8.
Front Immunol ; 9: 242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515573

RESUMO

Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.


Assuntos
Lectina de Ligação a Manose da Via do Complemento/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Família Multigênica/imunologia , Tuberculose Pulmonar/genética , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Lectina de Ligação a Manose da Via do Complemento/genética , Análise Mutacional de DNA , Resistência à Doença/genética , Resistência à Doença/imunologia , Feminino , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Índia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Masculino , Lectina de Ligação a Manose/imunologia , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/análise , Programas de Rastreamento , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , População Branca/genética , Adulto Jovem
9.
Front Immunol ; 8: 712, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694808

RESUMO

Approximately 1.7 billion people in the world harbor latent Mycobacterium tuberculosis (Mtb) with a substantial risk of progression to clinical outcome. Containment of these seed beds of Mtb is essential to eliminate tuberculosis completely in high burden settings such as India. Hence, there is an urgent need for the identification of new serological markers for detection or vaccine candidates to prevent latent tuberculosis infection (LTBI). DosR regulon antigens of Mtb might serve as attractive targets for LTBI diagnosis or vaccine development as they are specifically expressed and are upregulated during latent phase. In this study, we investigated the role of Rv2004c, a member of DosR regulon (exclusive to Mtb complex), in host-pathogen interaction and its immunogenic potential in LTBI, active TB, and healthy control cohorts. Rv2004c elicited strong antibody response in individuals with LTBI compared to active TB patients and healthy cohorts. Recombinant Rv2004c induced pro-inflammatory cytokine response in human peripheral blood mononuclear cells and THP-1 cells via NF-κB phosphorylation. Interaction of Rv2004c with toll-like receptor (TLR)-2 was confirmed using HEK-Blue hTLR-2 and pull-down assays. Rv2004c enhanced the surface expression of TLR-2 at mRNA and protein levels in THP-1 cells. Our findings revealed that Rv2004c induces strong humoral and cell mediated immune responses. Given these observations, we propose Rv2004c to be a potential diagnostic marker or an attractive vaccine candidate that can be useful against LTBI.

10.
Biologics ; 11: 55-63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496303

RESUMO

This article reviews briefly the making of an immunoprophylactic-cum-immunotherapeutic vaccine against leprosy. The vaccine is based on cultivable, heat-killed atypical mycobacteria, whose gene sequence is now known. It has been named Mycobacterium indicus pranii. It has received the approval of the Drug Controller General of India and the US Food and Drug Administration. Besides leprosy, M. indicus pranii has found utility in the treatment of category II ("difficult to treat") tuberculosis. It also heals ugly anogenital warts. It has preventive and therapeutic action against SP2/O myelomas. It is proving to be a potent adjuvant for enhancing antibody titers of a recombinant vaccine against human chorionic gonadotropin, with the potential of preventing pregnancy without derangement of ovulation and menstrual regularity in sexually active women.

11.
Front Immunol ; 8: 84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261197

RESUMO

Tuberculosis (TB) caused by the intracellular pathogen, Mycobacterium tuberculosis (Mtb), claims more than 1.5 million lives worldwide annually. Despite promulgation of multipronged strategies to prevent and control TB, there is no significant downfall occurring in the number of new cases, and adding to this is the relapse of the disease due to the emergence of antibiotic resistance and the ability of Mtb to remain dormant after primary infection. The pathology of Mtb is complex and largely attributed to immune-evading strategies that this pathogen adopts to establish primary infection, its persistence in the host, and reactivation of pathogenicity under favorable conditions. In this review, we present various biochemical, immunological, and genetic strategies unleashed by Mtb inside the host for its survival. The bacterium enables itself to establish a niche by evading immune recognition via resorting to masking, establishment of dormancy by manipulating immune receptor responses, altering innate immune cell fate, enhancing granuloma formation, and developing antibiotic tolerance. Besides these, the regulatory entities, such as DosR and its regulon, encompassing various putative effector proteins play a vital role in maintaining the dormant nature of this pathogen. Further, reactivation of Mtb allows relapse of the disease and is favored by the genes of the Rtf family and the conditions that suppress the immune system of the host. Identification of target genes and characterizing the function of their respective antigens involved in primary infection, dormancy, and reactivation would likely provide vital clues to design novel drugs and/or vaccines for the control of dormant TB.

12.
Helicobacter ; 22(1)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27277215

RESUMO

BACKGROUND: Helicobacter pylori, the human gastric pathogen, causes a variety of gastric diseases ranging from mild gastritis to gastric cancer. While the studies on H. pylori are dominated by those based on either East Asian or Western strains, information regarding H. pylori strains prevalent in the Middle East remains scarce. Therefore, we carried out whole-genome sequencing and comparative analysis of three H. pylori strains isolated from three native Arab, Kuwaiti patients. MATERIALS AND METHODS: H. pylori strains were sequenced using Illumina platform. The sequence reads were filtered and draft genomes were assembled and annotated. Various pathogenicity-associated regions and phages present within the genomes were identified. Phylogenetic analysis was carried out to determine the genetic relatedness of Kuwaiti strains to various lineages of H. pylori. The core genome content and virulence-related genes were analyzed to assess the pathogenic potential. RESULTS: The three genomes clustered along with HpEurope strains in the phylogenetic tree comprising various H. pylori lineages. A total of 1187 genes spread among various functional classes were identified in the core genome analysis. The three genomes possessed a complete cagPAI and also retained most of the known outer membrane proteins as well as virulence-related genes. The cagA gene in all three strains consisted of an AB-C type EPIYA motif. CONCLUSIONS: The comparative genomic analysis of Kuwaiti H. pylori strains revealed a European ancestry and a high pathogenic potential.


Assuntos
Genoma Bacteriano , Genótipo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/classificação , Helicobacter pylori/genética , Adulto , Idoso , Feminino , Variação Genética , Infecções por Helicobacter/epidemiologia , Helicobacter pylori/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Kuweit/epidemiologia , Masculino , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA , Fatores de Virulência/genética , Adulto Jovem
13.
Nucleic Acids Res ; 44(19): 9393-9412, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27550181

RESUMO

Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses.


Assuntos
Proteínas de Bactérias/metabolismo , Endonucleases/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/enzimologia , Anticorpos Antibacterianos/imunologia , Apoptose/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/isolamento & purificação , Linhagem Celular Tumoral , Análise por Conglomerados , Endonucleases/genética , Endonucleases/imunologia , Endonucleases/isolamento & purificação , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Soros Imunes/imunologia , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Ligação Proteica , Sistemas de Secreção Tipo IV , Receptor fas/metabolismo
14.
Sci Rep ; 6: 31798, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27539060

RESUMO

Pulmonary tuberculosis (PTB) results in lung functional impairment and there are no surrogate markers to monitor the extent of lung involvement. We investigated the clinical significance of S100A12 and soluble receptor for advanced glycation end-products (sRAGE) for predicting the extent of lung involvement. We performed an observational study in India with 119 newly diagnosed, treatment naïve, sputum smear positive, HIV-negative PTB patients and 163 healthy controls. All patients were followed-up for six months. Sociodemographic variables and the serum levels of S100A12, sRAGE, esRAGE, HMGB-1, TNF-α, IFN-γ and CRP were measured. Lung involvement in PTB patients was assessed by chest radiography. Compared with healthy controls, PTB patients had increased serum concentrations of S100A12 while sRAGE was decreased. S100A12 was an independent predictor of disease occurrence (OR 1.873, 95%CI 1.212-2.891, p = 0.004). Under DOTS therapy, S100A12 decreased significantly after 4 months whereas CRP significantly decreased after 2 months (p < 0.0001). Importantly, although CRP was also an independent predictor of disease occurrence, only S100A12 was a significant predictor of lung alveolar infiltration (OR 2.60, 95%CI 1.35-5.00, p = 0.004). These results suggest that S100A12 has the potential to assess the extent of alveolar infiltration in PTB.


Assuntos
Alvéolos Pulmonares , Embolia Pulmonar , Proteína S100A12/sangue , Tomografia Computadorizada por Raios X , Regulação para Cima , Adulto , Antígenos de Neoplasias/sangue , Citocinas/sangue , Feminino , Proteína HMGB1/sangue , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/sangue , Alvéolos Pulmonares/diagnóstico por imagem , Alvéolos Pulmonares/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico por imagem
15.
Sci Rep ; 6: 24535, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094446

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis is a global encumbrance and it is estimated that nearly one third population of the world acts as a reservoir for this pathogen without any symptoms. In this study, we attempted to characterise one of the genes of DosR regulon, Rv3131, a FMN binding nitroreductase domain containing protein, for its ability to alter cytokine profile, an essential feature of M. tuberculosis latency. Recombinant Rv3131 stimulated pro-inflammatory cytokines in THP-1 cells and human peripheral blood mononuclear cells in a time and dose dependent manner. In silico analyses using docking and simulations indicated that Rv3131 could strongly interact with TLR2 via a non-covalent bonding which was further confirmed using cell based colorimetric assay. In THP-1 cells treated with Rv3131 protein, a significant upsurge in the surface expression, overall induction and expression of mRNA of TLR2 was observed when analysed by flow cytometry, western blotting and real time PCR, respectively. Activation of TLR2 by Rv3131 resulted in the phosphorylation of NF- κß. Results of this study indicate a strong immunogenic capability of Rv3131 elicited via the activation of TLR2 signalling pathway. Therefore, it can be surmised that cytokine secretion induced by Rv3131 might contribute to establishment of M. tuberculosis in the granulomas.


Assuntos
Proteínas de Bactérias/genética , Citocinas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nitrorredutases/genética , Proteínas Quinases/genética , Regulon , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Citocinas/metabolismo , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética
16.
Sci Rep ; 6: 19833, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26817684

RESUMO

Mycobacterium indicus pranii (MIP) is a non-pathogenic mycobacterium, which has been tested on several cancer types like lung and bladder where tumour regression and complete recovery was observed. In discovering the potential cytotoxic elements, a preliminary test was carried out using four different fractions consisting of live bacteria, culture supernatant, heat killed bacteria and heat killed culture supernatant of MIP against two human cancer cells A549 and CaSki by 3-(4,5-dimethyl thiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was investigated in MCF-7 and ORL-115 cancer cells by poly-(ADP-ribose) polymerase (PARP) and DNA fragmentation assays. Among four MIP fractions, only heat killed MIP fraction (HKB) showed significant cytotoxicity in various cancer cells with inhibitory concentration, IC50 in the range 5.6-35.0 µl/(1.0 × 10(6) MIP cells/ml), while cytotoxicity effects were not observed in the remaining fractions. HKB did not show cytotoxic effects on non-cancerous cells contrary to cancerous cells, suggesting its safe usage and ability to differentially recognize between these cells. Evaluation on PARP assay further suggested that cytotoxicity in cancer cells were potentially induced via caspase-mediated apoptosis. The cytotoxic and apoptotic effects of MIP HKB have indicated that this fraction can be a good candidate to further identify effective anti-cancer agents.


Assuntos
Apoptose/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/farmacologia , Mycobacterium/química , Neoplasias/tratamento farmacológico , Células HeLa , Células Hep G2 , Temperatura Alta , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia
17.
Sci Rep ; 5: 15049, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456705

RESUMO

Evasion of innate immune recognition is one of the key strategies for persistence of Helicobacter pylori, by virtue of its ability to modulate or escape the host innate immune receptors and signaling pathways. C-type lectin receptors (CLRs) predominantly expressed by macrophages are pivotal in tailoring immune response against pathogens. The recognition of glyco or carbohydrate moieties by Mincle (Macrophage inducible C-type lectin) is emerging as a crucial element in anti-fungal and anti-mycobacterial immunity. Herein, we demonstrate the role of Mincle in modulation of innate immune response against H. pylori infection. Our results revealed an upregulated expression of Mincle which was independent of direct host cell contact. Upon computational modelling, Mincle was observed to interact with the Lewis antigens of H. pylori LPS and possibly activating an anti-inflammatory cytokine production, thereby maintaining a balance between pro- and anti-inflammatory cytokine production. Furthermore, siRNA mediated knockdown of Mincle in human macrophages resulted in up regulation of pro-inflammatory cytokines and consequent down regulation of anti-inflammatory cytokines. Collectively, our study demonstrates a novel mechanism employed by H. pylori to escape clearance by exploiting functional plasticity of Mincle to strike a balance between pro-and anti-inflammatory responses ensuring its persistence in the host.


Assuntos
Helicobacter pylori/imunologia , Evasão da Resposta Imune , Lectinas Tipo C/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/microbiologia , Receptores Imunológicos/imunologia , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Interleucina-10/biossíntese , Interleucina-10/imunologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Lipopolissacarídeos/química , Ativação de Macrófagos , Macrófagos/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Alinhamento de Sequência , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
18.
Molecules ; 20(9): 16770-87, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26389872

RESUMO

Polysaccharide containing extracts from immature fruits of okra (Abelmoschus esculentus) are known to exhibit antiadhesive effects against bacterial adhesion of Helicobacter pylori (H. pylori) to stomach tissue. The present study investigates structural and functional features of polymers responsible for this inhibition of bacterial attachment to host cells. Ammonium sulfate precipitation of an aqueous extract yielded two fractions at 60% and 90% saturation with significant antiadhesive effects against H. pylori, strain J99, (FE60% 68% ± 15%; FE90% 75% ± 11% inhibition rates) after preincubation of the bacteria at 1 mg/mL. Sequential extraction of okra fruits yielded hot buffer soluble solids (HBSS) with dose dependent antiadhesive effects against strain J99 and three clinical isolates. Preincubation of H. pylori with HBSS (1 mg/mL) led to reduced binding to 3'-sialyl lactose, sialylated Le(a) and Le(x). A reduction of bacterial binding to ligands complementary to BabA and SabA was observed when bacteria were pretreated with FE90%. Structural analysis of the antiadhesive polysaccharides (molecular weight, monomer composition, linkage analysis, stereochemistry, and acetylation) indicated the presence of acetylated rhamnogalacturonan-I polymers, decorated with short galactose side chains. Deacetylation of HBSS and FE90% resulted in loss of the antiadhesive activity, indicating esterification being a prerequisite for antiadhesive activity.


Assuntos
Abelmoschus/química , Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Frutas/química , Infecções por Helicobacter/metabolismo , Pectinas/farmacologia , Neoplasias Gástricas/metabolismo , Acetilação , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/microbiologia , Células Tumorais Cultivadas
20.
J Clin Diagn Res ; 9(2): XD03-XD05, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25859510

RESUMO

Malignant melanoma with occult primary is extremely rare. It is found that survival is almost same or even better than the melanomas with known primary site. Surgeons should have a high index of suspicion when a patient presents like sarcoma which bleeds profusely when planning for excision. Here, is an unusual case of young adult which presented initially with granulomatous lymphandenitis in axilla with primary suspicion of tuberculosis, later turning out to be sarcoma on FNAC and MRI. On immunochemistry (IHC), the final diagnosis of amelanotic melanoma was made and further workup did not show up any primary site of origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA