Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 35(9): 2135-2144, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29897504

RESUMO

Genetic diversity plays a central role in tumor progression, metastasis, and resistance to treatment. Experiments are shedding light on this diversity at ever finer scales, but interpretation is challenging. Using recent progress in numerical models, we simulate macroscopic tumors to investigate the interplay between growth dynamics, microscopic composition, and circulating tumor cell cluster diversity. We find that modest differences in growth parameters can profoundly change microscopic diversity. Simple outwards expansion leads to spatially segregated clones and low diversity, as expected. However, a modest cell turnover can result in an increased number of divisions and mixing among clones resulting in increased microscopic diversity in the tumor core. Using simulations to estimate power to detect such spatial trends, we find that multiregion sequencing data from contemporary studies is marginally powered to detect the predicted effects. Slightly larger samples, improved detection of rare variants, or sequencing of smaller biopsies or circulating tumor cell clusters would allow one to distinguish between leading models of tumor evolution. The genetic composition of circulating tumor cell clusters, which can be obtained from non-invasive blood draws, is therefore informative about tumor evolution and its metastatic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA