Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932244

RESUMO

Recently, respiratory syncytial virus (RSV) vaccines based on the prefusion F (pre-F) antigen were approved in the United States. We aimed to develop an enzyme-linked immunosorbent assay (ELISA)-based protocol for the practical and large-scale evaluation of RSV vaccines. Two modified pre-F proteins (DS-Cav1 and SC-TM) were produced by genetic recombination and replication using an adenoviral vector. The protocol was established by optimizing the concentrations of the coating antigen (pre-F proteins), secondary antibodies, and blocking buffer. To validate the protocol, we examined its accuracy, precision, and specificity using serum samples from 150 participants across various age groups and the standard serum provided by the National Institute of Health. In the linear correlation analysis, coating concentrations of 5 and 2.5 µg/mL of DS-Cav1 and SC-TM showed high coefficients of determination (r > 0.90), respectively. Concentrations of secondary antibodies (alkaline phosphatase-conjugated anti-human immunoglobulin G, diluted 1:2000) and blocking reagents (5% skim milk/PBS-T) were optimized to minimize non-specific reactions. High accuracy was observed for DS-Cav1 (r = 0.90) and SC-TM (r = 0.86). Further, both antigens showed high precision (coefficient of variation < 15%). Inhibition ELISA revealed cross-reactivity of antibodies against DS-Cav1 and SC-TM, but not with the attachment (G) protein.


Assuntos
Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Lactente , Pré-Escolar , Adulto , Criança , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Feminino , Sensibilidade e Especificidade , Antígenos Virais/imunologia , Masculino , Proteínas Virais de Fusão/imunologia , Idoso
2.
Front Immunol ; 14: 1182927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304302

RESUMO

Low-dose radiation therapy (LDRT) can suppress intractable inflammation, such as that in rheumatoid arthritis, and is used for treating more than 10,000 rheumatoid arthritis patients annually in Europe. Several recent clinical trials have reported that LDRT can effectively reduce the severity of coronavirus disease (COVID-19) and other cases of viral pneumonia. However, the therapeutic mechanism of LDRT remains unelucidated. Therefore, in the current study, we aimed to investigate the molecular mechanism underlying immunological alterations in influenza pneumonia after LDRT. Mice were irradiated to the whole lung 1 day post-infection. The changes in levels of inflammatory mediators (cytokines and chemokines) and immune cell populations in the bronchoalveolar lavage (BALF), lungs, and serum were examined. LDRT-treated mice displayed markedly increased survival rates and reduced lung edema and airway and vascular inflammation in the lung; however, the viral titers in the lungs were unaffected. Levels of primary inflammatory cytokines were reduced after LDRT, and transforming growth factor-ß (TGF-ß) levels increased significantly on day 1 following LDRT. Levels of chemokines increased from day 3 following LDRT. Additionally, M2 macrophage polarization or recruitment was increased following LDRT. We found that LDRT-induced TGF-ß reduced the levels of cytokines and polarized M2 cells and blocked immune cell infiltration, including neutrophils, in BALF. LDRT-induced early TGF-ß production was shown to be a key regulator involved in broad-spectrum anti-inflammatory activity in virus-infected lungs. Therefore, LDRT or TGF-ß may be an alternative therapy for viral pneumonia.


Assuntos
Artrite Reumatoide , COVID-19 , Pneumonia Viral , Animais , Camundongos , COVID-19/radioterapia , Inflamação , Citocinas , Dimercaprol , Fatores de Crescimento Transformadores
3.
Microbiol Spectr ; 11(4): e0135823, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272801

RESUMO

Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes lower respiratory diseases among infants and elderly people. Moreover, formalin-inactivated RSV (FI-RSV) vaccine induces serious enhanced respiratory disease (ERD). Radiation has been investigated as an alternative approach for producing inactivated or live-attenuated vaccines, which enhance the antigenicity and heterogeneous protective effects of vaccines compared with conventional formalin inactivation. In this study, we developed an RSV vaccine using gamma irradiation and analyzed its efficacy against RSV vaccine-induced ERD in a mouse model. Although gamma irradiation-inactivated RSV (RI-RSV) carbonylation was lower than FI-RSV carbonylation and RI-RSV showed a significant antibody production and viral clearance, RI-RSV caused more obvious body weight loss, pulmonary eosinophil infiltration, and pulmonary mucus secretion. Further, the conversion of prefusion F (pre-F) to postfusion F (post-F) was significant for both RI-RSV and FI-RSV, while that of RI-RSV was significantly higher than that of FI-RSV. We found that the conversion from pre- to post-F during radiation was caused by radiation-induced reactive oxygen species. Although we could not propose an effective RSV vaccine manufacturing method, we found that ERD was induced by RSV vaccine by various biochemical effects that affect antigen modification during RSV vaccine manufacturing, rather than simply by the combination of formalin and alum. Therefore, these biochemical actions should be considered in future developments of RSV vaccine. IMPORTANCE Radiation inactivation for viral vaccine production has been known to elicit a better immune response than other inactivation methods due to less surface protein damage. However, we found in this study that radiation-inactivated RSV (RI-RSV) vaccine induced a level of immune response similar to that induced by formalin-inactivated RSV (FI-RSV). Although RI-RSV vaccine showed less carbonylation than FI-RSV, it induced more conformational changes from pre-F to post-F due to the gamma radiation-induced reactive oxygen species response, which may be a key factor in RI-RSV-induced ERD. Therefore, ERD induced by RSV vaccine may be due to pre-F to post-F denaturation by random protein modifications caused by external stress. Our findings provide new ideas for inactivated vaccines for RSV and other viruses and confirm the importance of pre-F in RSV vaccines.


Assuntos
Pneumonia , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/química , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Espécies Reativas de Oxigênio , Pulmão , Anticorpos Antivirais , Formaldeído
4.
Front Oncol ; 12: 898185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226052

RESUMO

There is a substantial need for the development of biomaterials for protecting hematopoietic stem cells and enhancing hematopoiesis after radiation damage. Bacterial exopolysaccharide (EPS) has been shown to be very attractive to researchers as a radioprotectant owing to its high antioxidant, anti-cancer, and limited adverse effects. In the present study, we isolated EPS from a novel strain, Deinococcus radiodurans BRD125, which produces EPS in high abundance, and investigated its applicability as a radioprotective biomaterial. We found that EPS isolated from EPS-rich D. radiodurans BRD125 (DeinoPol-BRD125) had an excellent free-radical scavenging effect and reduced irradiation-induced apoptosis. In addition, bone-marrow and spleen-cell apoptosis in irradiated mice were significantly reduced by DeinoPol-BRD125 administration. DeinoPol-BRD125 enhanced the expression of hematopoiesis-related cytokines such as GM-CSF, G-GSF, M-CSF, and SCF, thereby enhancing hematopoietic stem cells protection and regeneration. Taken together, our findings are the first to report the immunological mechanism of a novel radioprotectant, DeinoPol-BRD125, which might constitute an ideal radioprotective and radiation mitigating agent as a supplement drug during radiotherapy.

5.
Front Immunol ; 13: 931052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898510

RESUMO

Salmonella enterica is a leading cause of food-borne diseases in humans worldwide, resulting in severe morbidity and mortality. They are carried asymptomatically in the intestine or gallbladder of livestock, and are transmitted predominantly from animals to humans via the fecal-oral route. Thus, the best preventive strategy is to preemptively prevent transmission to humans by vaccinating livestock. Live attenuated vaccines have been mostly favored because they elicit both cellular and humoral immunity and provide long-term protective immunity. However, developing these vaccines is a laborious and time-consuming process. Therefore, most live attenuated vaccines have been mainly used for phenotypic screening using the auxotrophic replica plate method, and new types of vaccines have not been sufficiently explored. In this study, we used Radiation-Mutation Enhancement Technology (R-MET) to introduce a wide variety of mutations and attenuate the virulence of Salmonella spp. to develop live vaccine strains. The Salmonella Typhimurium, ST454 strain (ST WT) was irradiated with Cobalt60 gamma-irradiator at 1.5 kGy for 1 h to maximize the mutation rate, and attenuated daughter colonies were screened using in vitro macrophage replication capacity and in vivo mouse infection assays. Among 30 candidates, ATOMSal-L6, with 9,961-fold lower virulence than the parent strain (ST454) in the mouse LD50 model, was chosen. This vaccine candidate was mutated at 71 sites, and in particular, lost one bacteriophage. As a vaccine, ATOMSal-L6 induced a Salmonella-specific IgG response to provide effective protective immunity upon intramuscular vaccination of mice. Furthermore, when mice and sows were orally immunized with ATOMSal-L6, we found a strong protective immune response, including multifunctional cellular immunity. These results indicate that ATOMSal-L6 is the first live vaccine candidate to be developed using R-MET, to the best of our knowledge. R-MET can be used as a fast and effective live vaccine development technology that can be used to develop vaccine strains against emerging or serotype-shifting pathogens.


Assuntos
Melhoramento Biomédico , Vacinas contra Salmonella , Animais , Anticorpos Antibacterianos/genética , Feminino , Humanos , Imunoglobulina G/genética , Camundongos , Mutação , Vacinas contra Salmonella/genética , Salmonella typhimurium , Suínos , Vacinas Atenuadas
6.
Front Immunol ; 12: 717556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484221

RESUMO

Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.


Assuntos
Imunidade Celular , Imunidade Humoral , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Citocinas/metabolismo , Imunização , Lipopolissacarídeos/imunologia , Camundongos , Vacinas contra Salmonella/administração & dosagem , Salmonella enterica/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos da radiação
7.
Hum Vaccin Immunother ; 17(2): 485-496, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32643515

RESUMO

The most widely used influenza vaccines are prepared by chemical inactivation. However, chemical, especially formalin, treatment-induced modifications of the antigenic structure of the virus are frequently associated with adverse effects including low efficacy of protection, unexpected immune responses, or exacerbation of disease. Gamma-irradiation was suggested as an alternative influenza virus inactivation method due to its great features of completely inactivating virus while not damaging the structures of protein antigens, and cross-protective ability against heterologous strains. However, immunological features of gamma radiation-inactivated influenza vaccine have not been fully understood. In this study, we aimed to investigate the humoral and cellular immune responses of gamma radiation-inactivated influenza vaccine. The gamma irradiation-inactivated influenza vaccine (RADVAXFluA) showed complete viral inactivation but retained normal viral structure with functional activities of viral protein antigens. Intranasal immunization of RADVAXFluA provided better protection against influenza virus infection than formalin-inactivated influenza virus (FIV) in mice. RADVAXFluA greatly enhanced the production of virus-specific serum IgG and alveolar mucosal IgA, which effectively neutralized HA (hemagglutinin) and NA (neuraminidase) activities, and blocked viral binding to the cells, respectively. Further analysis of IgG subclasses showed RADVAXFluA-immunized sera had higher levels of IgG1 and IgG2a than those of FIV-immunized sera. In addition, analysis of cellular immunity found RADVAXFluA induced strong dendritic cells (DC) activation resulting in higher DC-mediated activation of CD8+ T cells than FIV. The results support improved immunogenicity by RADVAXFluA.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Administração Intranasal , Animais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Raios gama , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Produtos Inativados
8.
Mol Immunol ; 101: 344-352, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30036800

RESUMO

Dendritic cells (DCs) play an important role in antigen presentation, which is an essential step for the induction of antigen-specific adaptive immunity. Inactivated bacterial whole cell vaccines have been widely used to prevent many bacterial infections because they elicit good immunogenicity due to the presence of various antigens and are relatively inexpensive and easy to manufacture. Recently, gamma-irradiated whole cells of nonencapsulated Streptococcus pneumoniae were developed as a broad-spectrum and serotype-independent multivalent vaccine. In the present study, we generated gamma-irradiated S. pneumoniae (r-SP) and investigated its capacity to stimulate mouse bone marrow-derived DCs (BM-DCs) in comparison with heat-inactivated and formalin-inactivated S. pneumoniae (h-SP and f-SP, respectively). r-SP showed an attenuated binding and internalization level to BM-DCs when compared to h-SP or f-SP. r-SP weakly induced the expression of CD80, CD83, CD86, MHC class I, and PD-L2 compared with h-SP or f-SP. Furthermore, r-SP less potently induced IL-6, TNF-α, and IL-23 expression than h-SP or f-SP but more potently induced IL-1ß expression than h-SP or f-SP in BM-DCs. Since Th17-mediated immune responses are known to be important for the protection against pneumococcal infections, r-SP-primed DCs were co-cultured with splenocytes or splenic CD4+ T cells. Interestingly, r-SP-sensitized BM-DCs markedly induced IL-17A+ CD4+ T cells whereas h-SP- or f-SP-sensitized BM-DCs weakly induced them. Collectively, these results suggest that r-SP could be an effective pneumococcal vaccine candidate eliciting Th17-mediated immune responses by stimulation of DCs.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Raios gama , Ativação Linfocitária/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/efeitos da radiação , Células Th17/imunologia , Animais , Antígeno B7-H1/metabolismo , Aderência Bacteriana/efeitos da radiação , Biomarcadores/metabolismo , Células da Medula Óssea/imunologia , Diferenciação Celular , Citocinas/metabolismo , Endocitose , Formaldeído , Temperatura Alta , Camundongos , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Baço/metabolismo
9.
Mol Immunol ; 93: 47-54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145158

RESUMO

Although Vibrio cholerae colonizes the small intestine and induces acute inflammatory responses, less is known about the molecular mechanisms of V. cholerae-induced inflammatory responses in the intestine. We recently reported that OmpU, one of the most abundant outer membrane proteins of V. cholerae, plays an important role in the innate immunity of the whole bacteria. In this study, we evaluated the role of OmpU in induction of IL-8, a representative chemokine that recruits various inflammatory immune cells, in the human intestinal epithelial cell (IEC) line, HT-29. Recombinant OmpU (rOmpU) of V. cholerae induced IL-8 expression at the mRNA and protein levels in a dose- and time-dependent manner. Interestingly, IL-8 was secreted through both apical and basolateral sides of the polarized HT-29 cells upon apical exposure to rOmpU but not upon basolateral exposure. rOmpU-induced IL-8 expression was inhibited by interference of lipid raft formation with nystatin, but not by blocking the formation of clathrin-coated pits with chlorpromazine. In addition, rOmpU-induced IL-8 expression was mediated via ERK1/2 and p38 kinase pathways, but not via JNK signaling pathway. Finally, V. cholerae lacking ompU elicited decreased IL-8 expression and adherence to HT-29 cells compared to the parental strain. Collectively, these results suggest that V. cholerae OmpU might play an important role in intestinal inflammation by inducing IL-8 expression in human IECs.


Assuntos
Adesinas Bacterianas/fisiologia , Células Epiteliais/metabolismo , Interleucina-8/biossíntese , Adesinas Bacterianas/genética , Adesão Celular , Polaridade Celular , Clorpromazina/farmacologia , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Células HT29 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Nistatina/farmacologia , Polimixina B/farmacologia , RNA Mensageiro/biossíntese , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transdução de Sinais , Vibrio cholerae/patogenicidade , Virulência
10.
J Mol Med (Berl) ; 95(12): 1315-1325, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28889177

RESUMO

Human beta-defensin-3 (HBD3), which is secreted from cells in the skin, salivary gland, and bone marrow, exhibits antimicrobial and immunomodulatory activities. Its C-terminal end contains a 15-amino acid polypeptide (HBD3-C15) that is known to effectively elicit antimicrobial activity. Recently, certain antimicrobial peptides are known to inhibit osteoclast differentiation and, thus, we investigated whether HBD3-C15 hinders osteoclast differentiation and bone destruction to assess its potential use as an anti-bone resorption agent. HBD3-C15 inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation and formation of resorption pits. In addition, HBD3-C15 disrupted the formation of RANKL-induced podosome belt which is a feature typically found in mature osteoclasts with bone-resorbing capacity. HBD3-C15 downregulated cortactin, cofilin, and vinculin, which are involved in the podosome belt formation. Furthermore, bone loss induced by RANKL was significantly reduced in a mouse calvarial implantation model that was treated with HBD3-C15. Similar inhibitory effects were observed on the osteoclast differentiation and podosome belt formation induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide (AaLPS). Concordantly, HBD3-C15 attenuated the resorption in the calvarial bone of AaLPS-implanted mouse. Collectively, these results suggest that HBD3-C15 has an anti-bone resorption effect in developing osteoclasts and that this occurs via its disruption of podosome belt formation. HBD3-C15 could be a potential therapeutic agent for the inhibition of bone destruction. KEY MESSAGES: HBD3-C15 inhibits osteoclast differentiation and bone resorption capacity. HBD3-C15 disrupts the podosome belt formation in osteoclasts. HBD3-C15 alleviates the bone loss by RANKL or A. actinomycetemcomitans LPS in vivo.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Osteoclastos/patologia , Peptídeos/uso terapêutico , Podossomos/metabolismo , beta-Defensinas/química , Aggregatibacter/química , Animais , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Peptídeos/farmacologia , Podossomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/farmacologia
11.
Mol Immunol ; 82: 75-83, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28038357

RESUMO

Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-ß expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation.


Assuntos
Proteínas de Bactérias/imunologia , Lipoproteínas/imunologia , Macrófagos/imunologia , Infecções Estreptocócicas/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Western Blotting , Modelos Animais de Doenças , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Células RAW 264.7 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Infecções Estreptocócicas/metabolismo , Streptococcus gordonii/imunologia , Receptor 2 Toll-Like/metabolismo
12.
Mol Immunol ; 77: 52-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27474971

RESUMO

Enterococcus faecalis is associated with refractory apical periodontitis and its lipoteichoic acid (Ef.LTA) is considered as a major virulence factor. Although the binding proteins of Ef.LTA may play an important role for mediating infection and immunity in the oral cavity, little is known about Ef.LTA-binding proteins (Ef.LTA-BPs) in saliva. In this study, we identified salivary Ef.LTA-BPs with biotinylated Ef.LTA (Ef.LTA-biotin) through mass spectrometry. The biotinylation of Ef.LTA was confirmed by binding capacity with streptavidin-FITC on CHO/CD14/TLR2 cells. The biological activity of Ef.LTA-biotin was determined based on the induction of nitric oxide and macrophage inflammatory protein-1α in a macrophage cell-line, RAW 264.7. To identify salivary Ef.LTA-BPs, the Ef.LTA-biotin was mixed with a pool of human saliva obtained from nine healthy subjects followed by precipitation with a streptavidin-coated bead. Ef.LTA-BPs were then separated with 12% SDS-PAGE and subjected to the mass spectrometry. Six human salivary Ef.LTA-BPs including short palate lung and nasal epithelium carcinoma-associated protein 2, zymogen granule protein 16 homolog B, hemoglobin subunit α and ß, apolipoprotein A-I, and lipocalin-1 were identified with statistical significance (P<0.05). Ef.LTA-BPs were validated with lipocalin-1 using pull-down assay. Hemoglobin inhibited the biofilm formation of E. faecalis whereas lipocalin-1 did not show such effect. Collectively, the identified Ef.LTA-BPs could provide clues for our understanding of the pathogenesis of E. faecalis and host immunity in oral cavity.


Assuntos
Enterococcus faecalis/patogenicidade , Lipopolissacarídeos/metabolismo , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Ácidos Teicoicos/metabolismo , Enterococcus faecalis/imunologia , Enterococcus faecalis/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Saliva/química , Saliva/imunologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/imunologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Teicoicos/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
13.
Mol Immunol ; 65(1): 168-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25660969

RESUMO

Binding of allergen to IgE on basophils positively affects allergic inflammation by releasing inflammatory mediators. Recently, basophils were shown to express pattern-recognition receptors, such as toll-like receptors (TLRs), for recognizing microbe-associated molecular patterns (MAMPs) that are independent of allergen-IgE binding. In this study, we investigated whether MAMP alone can induce IL-6 production in a human basophil cell line, KU812. Stimulation with flagellin in the absence of allergen-IgE association induced IL-6 expression in KU812 cells, while stimulation with lipoteichoic acid, peptidoglycan, or poly I:C did not under the same condition. Flagellin-induced IL-6 expression was also observed in human primary basophils. Flow cytometric analysis showed that KU812 cells expressed flagellin-recognizing TLR5 both on the cell surface and in the cytoplasm while TLR2 and TLR3 were observed only in the cytoplasm. We further demonstrated that although flagellin augmented the phosphorylation of mitogen-activated protein kinases including p38 kinase, ERK, and JNK, flagellin-induced IL-6 production was attenuated by inhibitors for p38 kinase and ERK, but not by JNK inhibitors. In addition, flagellin enhanced phosphorylation of signaling molecules including CREB, PKCδ, and AKT. The inhibitors for PKA and PKC also showed inhibitory effects. Interestingly, flagellin-induced IL-6 production was further enhanced by pretreatment with inhibitors for PI3K, implying that PI3K negatively affects the flagellin-induced IL-6 production. Furthermore, DNA binding activities of NF-κB, AP-1, and CREB, which play pivotal roles in the induction of IL-6 gene expression, were increased by flagellin. These results suggest that flagellin alone is sufficient to induce IL-6 gene expression via TLR5 signaling pathways in human basophils.


Assuntos
Alérgenos/imunologia , Basófilos/imunologia , Flagelina/imunologia , Hipersensibilidade/imunologia , Interleucina-6/biossíntese , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/imunologia , Interleucina-6/genética , Interleucina-8/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/genética , Peptidoglicano/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Poli I-C/farmacologia , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , Receptores de Reconhecimento de Padrão/imunologia , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like/biossíntese , Receptor 3 Toll-Like/biossíntese , Receptor 5 Toll-Like/biossíntese , Fator de Transcrição AP-1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Mol Immunol ; 65(1): 17-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25600878

RESUMO

Staphylococcus aureus is a Gram-positive bacterium that causes inflammation at infection sites by inducing various inflammatory mediators such as nitric oxide (NO). To identify the staphylococcal virulence factors contributing to NO production, we compared the ability of ethanol-killed wild-type S. aureus and mutant strains lacking lipoteichoic acid (ΔltaS), lipoproteins (Δlgt), or d-alanine (ΔdltA) to stimulate NO production in a murine macrophage cell line, RAW 264.7, and the primary macrophages derived from C57BL/6 mice. Wild-type, ΔltaS, and ΔdltA strains induced NO production in a dose-dependent manner but this response was not observed when the cells were stimulated with the Δlgt strain. Moreover, purified lipoproteins triggered NO production in macrophages. Coincident with NO induction, the wild-type, ΔltaS, and ΔdltA strains induced expression of inducible NO synthase (iNOS) at both mRNA and protein levels whereas Δlgt failed to induce iNOS protein or mRNA. Transient transfection followed by a reporter gene assay and Western blotting experiments demonstrated that wild-type, ΔltaS, and ΔdltA strains, but not the Δlgt strain, induced substantial activation of NF-κB and STAT1 phosphorylation, both of which are known to be crucial for iNOS expression. Moreover, wild-type, ΔltaS, and ΔdltA strains increased Toll-like receptor 2 (TLR2) activation, which is known to mediate S. aureus-induced innate immunity, whereas the Δlgt strain did not. Collectively, these results suggest that lipoproteins in the cell wall of S. aureus play a major role in the induction of NO production in murine macrophages through activation of the TLR2 receptor.


Assuntos
Lipoproteínas/imunologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico/biossíntese , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Parede Celular/imunologia , Ativação Enzimática , Células HEK293 , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fosforilação , RNA Mensageiro/biossíntese , Fator de Transcrição STAT1/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Transferases/genética
15.
J Periodontol ; 85(9): 1259-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24579764

RESUMO

BACKGROUND: Low-level laser irradiation promotes cell viability and wound healing in periodontal tissue. However, its effect on periodontal pathogenic bacteria is unknown. The purpose of this study is to investigate the biologic effect of low-level laser irradiation on Porphyromonas gingivalis. METHODS: A murine macrophage cell line (RAW 264.7) was cultured and treated with gallium-aluminum-arsenate (GaAlAs) laser-irradiated P. gingivalis with varying levels of energy fluency. Gene expression of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), interferon-ß (IFN-ß), and inducible nitric oxide synthase (iNOS) was examined by reverse transcription-polymerase chain reaction. Production of iNOS was determined by Western blot analysis, and nitric oxide (NO) release was assessed using Griess reagent. Flow cytometric analysis was performed to determine the activation of Toll-like receptors (TLRs) in response to P. gingivalis. RESULTS: The laser-irradiated P. gingivalis significantly enhanced messenger RNA and protein levels of iNOS in RAW 264.7. Although the laser irradiation on P. gingivalis did not alter the expression level of MCP-1, IL-6, and IFN-ß, it showed a noticeable effect on NO production in RAW 264.7. Furthermore, the laser-irradiated P. gingivalis accelerated TLR2 activation, but not TLR4 activation. CONCLUSIONS: This study reveals that GaAlAs laser irradiation on P. gingivalis induced iNOS expression at the transcriptional and translation levels and increased NO release in macrophages. Moreover, it is confirmed that this process was mediated specifically by TLR2 activation. These findings suggest that low-level laser irradiation to periodontal pathogenic bacteria could be detrimental to periodontal treatments.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Macrófagos/microbiologia , Óxido Nítrico/efeitos da radiação , Porphyromonas gingivalis/efeitos da radiação , Animais , Técnicas Bacteriológicas , Células CHO , Técnicas de Cultura de Células , Linhagem Celular , Quimiocina CCL2/análise , Cricetulus , Interferon beta/análise , Interleucina-6/análise , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/análise , Porphyromonas gingivalis/metabolismo , Receptor 2 Toll-Like/análise , Receptor 4 Toll-Like/análise
16.
Microbes Infect ; 16(2): 153-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211871

RESUMO

Gram-positive bacteria contain lipoteichoic acid (LTA) and peptidoglycan (PGN) layers, both of which are considered as major virulence factors associated with inflammation. Cyclooxygenase-2 (COX-2) plays an important role in the inflammation by generating prostaglandins at infections. Since LTA and PGN are thought to cooperate in the establishment of inflammation, we examined the ability of staphylococcal LTA (Sa.LTA) to induce COX-2 expression in the presence of muramyl dipeptide (MDP), which is the minimal structural unit of PGN required for inflammation, in macrophages. While MDP failed to induce COX-2 expression, Sa.LTA alone was sufficient to induce COX-2 production. Treatment with MDP enhanced Sa.LTA-induced COX-2 and prostaglandin E2 production. The cooperative effect between Sa.LTA and MDP was not observed in COX-2 expression by macrophages derived from Toll-like receptor 2 (TLR2)- or nucleotide-binding oligomerization domain 2 (NOD2)-deficient mice. In addition, MDP enhanced Sa.LTA-induced activation of the transcription factors NF-κB and CRE, which are known to modulate COX-2 gene transcription. Conclusively, these results suggest that MDP and Sa.LTA cooperatively induce inflammatory response by overproducing COX-2 through NOD2 and TLR2.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Ciclo-Oxigenase 2/biossíntese , Lipopolissacarídeos/metabolismo , Macrófagos/enzimologia , Macrófagos/microbiologia , Staphylococcus aureus/imunologia , Ácidos Teicoicos/metabolismo , Animais , Células Cultivadas , Interações Hospedeiro-Patógeno , Inflamação , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/imunologia
17.
Cancer Lett ; 301(1): 63-74, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21078543

RESUMO

Carcinogens frequently provoke immunosuppressive effects thereby allowing cancer cells to persist in the host. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) is a carcinogenic heterocyclic amine that is abundantly produced by overcooking meat and fish. Here, we investigated the effect of Trp-P-1 on dendritic cells (DCs), which play a central role in the appropriate activation of the host immune system. When human monocyte-derived DCs were stimulated with lipopolysaccharide (LPS), the DCs became mature with an increase in the expression of co-stimulatory receptors such as CD80, CD86, and MHC molecules and a decrease in phagocytic capacity. Trp-P-1 inhibited all of these phenomena under the same conditions. In addition, Trp-P-1 inhibited production of the cytokines TNF-α and IL-12 in LPS-stimulated DCs. Furthermore, DCs that were pre-exposed to Trp-P-1 were less efficient in inducing activation and proliferation of autologous T cells than control DCs. Trp-P-1 also attenuated the ability of DCs to directly kill T-cell lymphoma Jurkat cells. Mechanism studies showed that Trp-P-1 did not inhibit LPS-binding to Toll-like receptor 4 but interfered with the signaling pathways mediated through p38 kinase. In conclusion, our results suggest that Trp-P-1 is immunosuppressive by inhibiting the functionality of DCs that play an essential role in the appropriate induction of anti-cancer immune responses.


Assuntos
Carbolinas/toxicidade , Carcinógenos/toxicidade , Células Dendríticas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/fisiologia , Humanos , Interleucina-12/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fosforilação , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA