Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2193866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37013838

RESUMO

Inositol polyphosphates (IPs) are a group of inositol metabolites that act as secondary messengers for external signalling cues. They play various physiological roles such as insulin release, telomere length maintenance, cell metabolism, and aging. Inositol hexakisphosphate kinase 2 (IP6K2) is a key enzyme that produces 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-IP7), which influences the early stages of glucose-induced exocytosis. Therefore, regulation of IP6Ks may serve as a promising strategy for treating diseases such as diabetes and obesity. In this study, we designed, synthesised, and evaluated flavonoid-based compounds as new inhibitors of IP6K2. Structure-activity relationship studies identified compound 20s as the most potent IP6K2 inhibitor with an IC50 value of 0.55 µM, making it 5-fold more potent than quercetin, the reported flavonoid-based IP6K2 inhibitor. Compound 20s showed higher inhibitory potency against IP6K2 than IP6K1 and IP6K3. Compound 20s can be utilised as a hit compound for further structural modifications of IP6K2 inhibitors.


Assuntos
Inibidores Enzimáticos , Flavonoides , Insulina , Fosfotransferases (Aceptor do Grupo Fosfato) , Flavonoides/farmacologia , Inositol , Transdução de Sinais , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
2.
Eur J Med Chem ; 245(Pt 1): 114927, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36379105

RESUMO

Adiponectin and leptin are major adipocytokines that control crosstalk between adipose tissue and other organ systems. Hypoadiponectinemia and hypoleptinemia are associated with human metabolic diseases. Compounds with adipocytokine biosynthesis-stimulating activities could be developed as therapeutics against diverse metabolic conditions. In phenotypic screening with human bone marrow mesenchymal stem cells (hBM-MSCs), (E)-4-hydroxy-3-(3-(4-hydroxy-3-methoxyphenyl)acryloyl)-6-methyl-2H-pyran-2-one (1) was identified to increase adiponectin biosynthesis during adipogenesis and simultaneously to stimulate leptin production. Using the compound 1 structure, the structure-activity relationship study was performed to discover more potent compounds stimulating both adiponectin and leptin production. (E)-3-(3-(2-fluoropyridin-4-yl)acryloyl)-4-hydroxy-6-methyl-2H-pyran-2-one (11) exhibited the most potent adiponectin (EC50, 2.87 µM) and leptin (EC50, 2.82 µM) biosynthesis-stimulating activities in hBM-MSCs. In a target identification study, compound 11 was characterized as a dual modulator binding to both peroxisome proliferator-activated receptor (PPAR) γ and glucocorticoid receptor (GR). This study provides a novel pharmacophore for PPARγ/GR dual modulators with therapeutic potential against human metabolic diseases.


Assuntos
Adiponectina , Leptina , Células-Tronco Mesenquimais , PPAR gama , Piranos , Receptores de Glucocorticoides , Humanos , Adipogenia , Adiponectina/biossíntese , Leptina/farmacologia , Leptina/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , PPAR gama/agonistas , Piranos/química , Piranos/farmacologia , Receptores de Glucocorticoides/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA