Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 60(17): 7459-7475, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28799755

RESUMO

A3 adenosine receptor (AR) ligands including A3 AR agonist, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) were examined for adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs). In this model, 1a significantly increased adiponectin production, which is associated with improved insulin sensitivity. However, A3 AR antagonists also promoted adiponectin production in hBM-MSCs, indicating that the A3 AR pathway may not be directly involved in the adiponectin promoting activity. In a target deconvolution study, their adiponectin-promoting activity was significantly correlated to their binding activity to both peroxisome proliferator activated receptor (PPAR) γ and PPARδ. They functioned as both PPARγ partial agonists and PPARδ antagonists. In the diabetic mouse model, 1a and its structural analogues A3 AR antagonists significantly decreased the serum levels of glucose and triglyceride, supporting their antidiabetic potential. These findings indicate that the polypharmacophore of these compounds may provide therapeutic insight into their multipotent efficacy against various human diseases.


Assuntos
Agonistas do Receptor A3 de Adenosina/uso terapêutico , Adenosina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , PPAR delta/antagonistas & inibidores , PPAR gama/agonistas , Adenosina/química , Adenosina/farmacologia , Adenosina/uso terapêutico , Agonistas do Receptor A3 de Adenosina/química , Agonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Adiponectina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Resistência à Insulina , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR delta/metabolismo , PPAR gama/metabolismo , Polifarmacologia , Receptor A3 de Adenosina/metabolismo
2.
Toxicol Appl Pharmacol ; 310: 185-194, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664576

RESUMO

Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200µM formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-ß-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, l-cystathionine and l-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response.


Assuntos
Cistationina/metabolismo , Formaldeído/toxicidade , Inflamação/patologia , Queratinócitos/patologia , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Humanos
3.
J Nat Prod ; 78(6): 1390-6, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26078114

RESUMO

A marine-derived Streptomyces strain, SSC21, was isolated from the sediment of Suncheon Bay, Republic of Korea. Chemical analysis of the bacterial strain resulted in the isolation of four new metabolites, suncheonosides A-D (1-4, respectively), each bearing a sulfur atom. The planar structures of the suncheonosides were identified as hexasubstituted benzothioate glycosides by combined spectroscopic analyses. Analysis of the configuration of the sugar moieties based on ROESY nuclear magnetic resonance correlations, one-bond (1)H-(13)C coupling constant analysis, and chemical derivatizations indicated that the suncheonosides incorporate only l-rhamnose. Suncheonosides A, B, and D promoted adiponectin production in a concentration-dependent manner during adipogenesis in human mesenchymal stem cells, suggesting antidiabetic potential.


Assuntos
Derivados de Benzeno/isolamento & purificação , Glicosídeos/isolamento & purificação , Streptomyces/química , Compostos de Enxofre/isolamento & purificação , Adiponectina/agonistas , Derivados de Benzeno/química , Relação Dose-Resposta a Droga , Glicosídeos/química , Humanos , Biologia Marinha , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , República da Coreia , Compostos de Enxofre/química
4.
Toxicol Appl Pharmacol ; 283(2): 147-55, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617811

RESUMO

Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD.


Assuntos
Alérgenos/farmacologia , Epiderme/metabolismo , Queratinócitos/metabolismo , Linfangiogênese/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/imunologia , Prepúcio do Pênis/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Linfangiogênese/efeitos dos fármacos , Masculino , Camundongos
5.
J Dermatol Sci ; 76(1): 60-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25128984

RESUMO

BACKGROUND: The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. OBJECTIVE: This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. METHODS: We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. RESULTS: We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. CONCLUSION: The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma.


Assuntos
Colágeno/química , Laminina/química , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteoglicanas/química , Fatores de Transcrição SOXE/metabolismo , Membrana Basal/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Combinação de Medicamentos , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Melaninas/química , Melanócitos/citologia , Melanoma/metabolismo , Fator de Transcrição PAX3 , Pigmentação , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA