Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169277, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38110098

RESUMO

The Ediacaran to Cambrian period is generally considered to be the vital transition in the history of marine redox environment and life evolution on earth. The ocean oxygenation levels during this transition period are still debated. Since iron is widely involved in biogeochemical cycles and undergoes redox cycling both in the seawater and sediments, it has become a significant proxy to reconstruct paleo-marine environment. In order to constrain the paleo-marine redox state in the early Cambrian, the iron isotope composition of bulk rock (δ56FeT) is interpreted combining with iron-speciation, redox sensitive elements and pyrite sulfur isotope (δ34Spy) of Yuertusi Formation in Tarim Block. The δ56FeT values varies from -0.39 ‰ to 0.48 ‰, with an average of 0.07 ‰, mainly controlled by pyrite mineral facies in this study. Based on the mechanism of pyrite generation in different redox condition, it is proposed that the marine environment of the lower Cambrian in the Tarim basin is dominated by anoxic with intermittent euxinic state. The dynamic evolution of redox environment can be divided into three intervals. The gradual decrease of δ56Fe in Interval I indicates the paleo-marine environment changed from anoxic ferruginous to euxinic, and the paleo-marine sulfate reservoir decreased to a limited level, which might be attributed to abundant burial of organic matter and pyrite. For Interval II, δ56Fe values first increase to evident positive because of partial oxidization then decreased to that of seawater (about 0 ‰) due to complete oxidization. In Interval III, the continuous decrease of δ56Fe values infers a sustaining oxidization. In summary, the paleo-marine environment of the lower Cambrian Yuertusi Formation evolved from anoxic ferruginous to euxinic and then oxidized continuous. Iron isotope statistics from geological historical periods indicate that seawater was relatively oxidized after the NOE event but did not reach the oxidation levels of present-day seawater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA