Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979406

RESUMO

The in vivo roles of lysophospholipase, which cleaves a fatty acyl ester of lysophospholipid, remained unclear. Recently, we have unraveled a previously unrecognized physiological role of the lysophospholipase PNPLA7, a member of the Ca2+-independent phospholipase A2 (iPLA2) family, as a key regulator of the production of glycerophosphocholine (GPC), a precursor of endogenous choline, whose methyl groups are preferentially fluxed into the methionine cycle in the liver. PNPLA7 deficiency in mice markedly decreases hepatic GPC, choline, and several metabolites related to choline/methionine metabolism, leading to various symptoms reminiscent of methionine shortage. Overall metabolic alterations in the liver of Pnpla7-null mice in vivo largely recapitulate those in methionine-deprived hepatocytes in vitro. Reduction of the methyl donor S-adenosylmethionine (SAM) after methionine deprivation decreases the methylation of the PNPLA7 gene promoter, relieves PNPLA7 expression, and thereby increases GPC and choline levels, likely as a compensatory adaptation. In line with the view that SAM prevents the development of liver cancer, the expression of PNPLA7, as well as several enzymes in the choline/methionine metabolism, is reduced in human hepatocellular carcinoma. These findings uncover an unexplored role of a lysophospholipase in hepatic phospholipid catabolism coupled with choline/methionine metabolism.


Assuntos
Colina , Lisofosfolipase , Animais , Humanos , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Lisofosfolipase/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo
2.
Cell Rep ; 42(2): 111940, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719796

RESUMO

Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.


Assuntos
Fígado , Lisofosfolipase , Metionina , Fosfatidilcolinas , Animais , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Fosfatidilcolinas/metabolismo
3.
Arch Environ Contam Toxicol ; 74(2): 240-247, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080015

RESUMO

Several epidemiological studies have suggested that the incidence of male reproductive organ malformations, including hypospadias or cryptorchidism, has increased due to fetal-stage exposure to environmental pollutants. However, the association of chemical exposure with the expression of target regulatory genes in the tissues of patients has not yet been reported. Because experimental approaches or clinical trials in human studies are limited, especially those using fetal and/or infants, it is difficult to obtain clear physiological evidence of mechanisms underlying male reproductive malformations. Thus, the lack of physiological evidence makes this issue controversial. We analyzed preputial tissues from patients with hypospadias (n = 23) and phimosis (n = 16). The atypical CYP1 family genes, CYP1A1 and CYP1B1, are potential biomarkers of environmental chemical exposure. We then compared the expression levels of CYP1A1 and CYP1B1 between hypospadias and phimosis samples by quantitative RT-PCR analysis. The mRNA expression levels of SRD5A2 and AR also were measured, because the androgen-related genes involved in the onset of disorders of male reproductive system. A significantly higher CYP1B1 expression level and a lower AR expression level were observed in the hypospadias groups than in the phimosis group. Positive correlations (P < 0.001) between the mRNA expression levels of the CYP1 family and SRD5A2 were found in patients with hypospadias but not in those with phimosis. Moreover, the methylation levels of the four genes were determined by bisulfite genomic sequencing. Although the SRD5A2 promoter region showed moderate methylation, no methylation was detected in CYP1A1, CYP1B1, or AR. There was no significant difference in SRD5A2 promoter methylation level between hypospadias and phimosis patients. Negative correlations were found between the methylation level of SRD5A2, especially at the - 221 Sp1 site, and the CYP1 family mRNA expression levels (CYP1A1, p = 0.002; CYP1B1, p = 0.007) in hypospadias patients, but not in phimosis patients. The significant positive association of mRNA expression level and the negative association of methylation level of the SRD5A2 gene with the mRNA expression levels of CYP1 family genes in the preputial tissue seem to indicate the chemical exposure of patients with hypospadias.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Hipospadia/genética , Proteínas de Membrana/genética , Fimose/genética , Adolescente , Biomarcadores/metabolismo , Criança , Pré-Escolar , Ilhas de CpG , Metilação de DNA , Prepúcio do Pênis , Humanos , Lactente , Masculino , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Xenobióticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA