Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 76(1-2): 219-229, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29322360

RESUMO

Pro-domain of a cysteine cathepsin contains a highly conserved Ex2Rx2Fx2Nx3Ix3N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg → Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder "Pycnodysostosis". In the present study, we have characterized in vitro Arg → Trp mutant of hCTSK and the same mutant of hCTSL. The R → W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.


Assuntos
Arginina/metabolismo , Catepsina K/metabolismo , Catepsina L/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , Catepsina K/química , Catepsina K/genética , Catepsina L/química , Catepsina L/genética , Dicroísmo Circular , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Especificidade por Substrato
2.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 12): 1591-603, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23151624

RESUMO

Papain is the archetype of a broad class of cysteine proteases (clan C1A) that contain a pro-peptide in the zymogen form which is required for correct folding and spatio-temporal regulation of proteolytic activity in the initial stages after expression. This study reports the X-ray structure of the zymogen of a thermostable mutant of papain at 2.6 Å resolution. The overall structure, in particular that of the mature part of the protease, is similar to those of other members of the family. The structure provides an explanation for the molecular basis of the maintenance of latency of the proteolytic activity of the zymogen by its pro-segment at neutral pH. The structural analysis, together with biochemical and biophysical studies, demonstrated that the pro-segment of the zymogen undergoes a rearrangement in the form of a structural loosening at acidic pH which triggers the proteolytic activation cascade. This study further explains the bimolecular stepwise autocatalytic activation mechanism by limited proteolysis of the zymogen of papain at the molecular level. The possible factors responsible for the higher thermal stability of the papain mutant have also been analyzed.


Assuntos
Precursores Enzimáticos/metabolismo , Mutação , Papaína/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Estabilidade Enzimática , Modelos Moleculares , Papaína/química , Papaína/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA